7 research outputs found

    Age-dependent impairment of IgG responses to glycosylphosphatidylinositol with equal exposure to Plasmodium falciparum among Javanese migrants to Papua, Indonesia.

    No full text
    Immune responses directed at glycosylphosphatidylinositol (GPI) anchors of Plasmodium falciparum may offer protection against symptomatic malaria. To independently explore the effect of age on generation of the anti-GPI IgG response, we measured serum anti-GPI IgGs in a longitudinal cohort of migrant Javanese children (6-12 years old) and adults (> or = 20 years old) with equivalent numbers of exposures to P. falciparum in Papua, Indonesia. While the peak response in adults was achieved after a single infection, comparable responses in children required > or = 3-4 infections. Significantly fewer children (16%) than adults (41%) showed a high (optical density > 0.44) anti-GPI IgG response (odds ratio [OR] = 3.8, 95% confidence interval [CI] = 2.3-6.3, P < 0.0001), and adults were more likely to show a persistently high response (OR = 5.5, 95% CI = 1.0-56.8, P = 0.03). However, the minority of children showing a strong response were significantly less likely to experience symptoms with subsequent parasitemia compared with those with a weak response (OR = 4.0, 95% CI = 1.1-13.8, P = 0.02). This effect was not seen among high- and low-responding adults (OR = 1.2, 95% CI = 0.5-2.8, P = 0.60). Host age, independent of cumulative exposure, apparently represents a key determinant of the quantitative and qualitative nature of the IgG response to P. falciparum GPI

    Semen activates the female immune response during early pregnancy in mice

    No full text
    Insemination elicits inflammatory changes in female reproductive tissues, but whether this results in immunological priming to paternal antigens or influences pregnancy outcome is not clear. We have evaluated indices of lymphocyte activation in lymph nodes draining the uterus following allogeneic mating in mice and have investigated the significance of sperm and plasma constituents of semen in the response. At 4 days after mating, there was a 1.7-fold increase in the cellularity of the para-aortic lymph node (PALN) compared with virgin controls. PALN lymphocytes were principally T and B lymphocytes, with smaller populations of CD3(+) B220(lo), NK1.1(+) CD3(–) (NK) and NK1.1(+) CD3(+) (NKT) cells. CD69 expression indicative of activation was increased after mating and was most evident in CD3(+) and NK1.1(+) cells. Synthesis of cytokines including interleukin-2, interleukin-4 and interferon-γ was elevated in CD3(+) PALN cells after exposure to semen, as assessed by intracellular cytokine fluorescence-activated cell sorting, immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction. Matings with vasectomized males indicated that the lymphocyte activation occurs independently of sperm. However, in contrast, males from which seminal vesicle glands were surgically removed failed to stimulate PALN cell proliferation or cytokine synthesis. Adoptive transfer experiments using radiolabelled lymphocytes from mated mice showed that lymphocytes activated at insemination home to embryo implantation sites in the uterus as well as other mucosal tissues and lymph nodes. These findings indicate that activation and expansion of female lymphocyte populations occurs after mating, and is triggered by constituents of seminal plasma derived from the seminal vesicle glands. Moreover, lymphocytes activated at insemination may help mediate maternal tolerance of the conceptus in the implantation site

    Regulating immunity to malaria.

    No full text
    The optimal outcome of a malaria infection is that parasitized cells are killed and degraded without inducing significant pathology. Since much of the pathology of malaria infection can be immune-mediated, this implies that immune responses have to be carefully regulated. The mechanisms by which anti-malarial immune responses are believed to be regulated were discussed at the recent Malaria Immunology Workshop (Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; February 2005). Potential regulatory mechanisms include regulatory T cells, which have been shown to significantly modify cellular immune responses to various protozoan infections, including leishmania and malaria; neutralising antibodies to pro-inflammatory malarial toxins such as glycosylphosphatidylinositol and haemozoin; and self-regulating networks of effector molecules. Innate and adaptive immune responses are further moderated by the broader immunological environment, which is influenced by both the genetic background of the host and by co-infection with other pathogens. A detailed understanding of the interplay between these different immunoregulatory processes may facilitate the rationale design of vaccines and novel therapeutics

    Smoothing of initial conditions for high order approximations in option pricing

    Get PDF
    In this article the Finite Difference method is used to solve the Black Scholes equation. A second order and fourth order accurate scheme is implemented in space and evaluated. The scheme is then tried for different initial conditions. First the discontinuous pay off function of a European Call option is used. Due to the nonsmooth charac- teristics of the chosen initial conditions both schemes show an order of two. Next, the analytical solution to the Black Scholes is used when t=T/2. In this case, with a smooth initial condition, the fourth order scheme shows an order of four. Finally, the initial nonsmooth pay off function is modified by smoothing. Also in this case, the fourth order method shows an order of convergence of four.
    corecore