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IgG antibodies to synthetic GPI 
are biomarkers of immune-status to both 
Plasmodium falciparum and Plasmodium vivax 
malaria in young children
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Abstract 

Background: Further reduction in malaria prevalence and its eventual elimination would be greatly facilitated by the 
development of biomarkers of exposure and/or acquired immunity to malaria, as well as the deployment of effective 
vaccines against Plasmodium falciparum and Plasmodium vivax. A better understanding of the acquisition of immu-
nity in naturally-exposed populations is essential for the identification of antigens useful as biomarkers, as well as to 
inform rational vaccine development.

Methods: ELISA was used to measure total IgG to a synthetic form of glycosylphosphatidylinositol from P. falciparum 
(PfGPI) in a cohort of 1–3 years old Papua New Guinea children with well-characterized individual differences in expo-
sure to P. falciparum and P. vivax blood-stage infections. The relationship between IgG levels to PfGPI and measures of 
recent and past exposure to P. falciparum and P. vivax infections was investigated, as well as the association between 
antibody levels and prospective risk of clinical malaria over 16 months of follow-up.

Results: Total IgG levels to PfGPI were low in the young children tested. Antibody levels were higher in the presence 
of P. falciparum or P. vivax infections, but short-lived. High IgG levels were associated with higher risk of P. falciparum 
malaria (IRR 1.33–1.66, P = 0.008–0.027), suggesting that they are biomarkers of increased exposure to P. falciparum 
infections. Given the cross-reactive nature of antibodies to PfGPI, high IgG levels were also associated with reduced 
risk of P. vivax malaria (IRR 0.65–0.67, P = 0.039–0.044), indicating that these antibodies are also markers of acquired 
immunity to P. vivax.

Conclusions: This study highlights that in young children, IgG to PfGPI might be a useful marker of immune-status 
to both P. falciparum and P. vivax infections, and potentially useful to help malaria control programs to identify 
populations at-risk. Further functional studies are necessary to confirm the potential of PfGPI as a target for vaccine 
development.
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Background
Despite several countries having reduced malaria inci-
dence by more than 75%, and a reduction in mortality 
by 48% globally, more than 3 billion people are still at 
risk of contracting malaria and some 438,000 deaths still 
occur every year [1]. Current malaria control and elimi-
nation efforts would be greatly enhanced by the devel-
opment of novel and more sensitive surveillance tools. 
For instance, serological markers that can be used to 
estimate exposure to malaria parasites and/or indicate 
a person’s immune status would help to identify popu-
lations at risk, and to direct resources to areas in more 
need [2–4]. Additionally, the development and deploy-
ment of highly efficacious vaccines against the two 
major malaria parasites, Plasmodium falciparum and 
Plasmodium vivax, would certainly accelerate malaria 
elimination [2, 5].

Identifying optimal antigenic targets for evaluating 
exposure or for vaccine development, however, remains a 
huge challenge due to the complexity of malaria parasites 
biology and epidemiology [6]. As the dynamics of anti-
body acquisition and maintenance vary based on expo-
sure intensity, which serologic markers are informative 
of exposure or immunity is likely to differ by age group 
and transmission setting [4, 7, 8]. A better understand-
ing of the human immune responses to malaria parasites 
is thus essential for biomarker discovery, and very useful 
in guiding rational vaccine design [4, 7, 8]. To date, rela-
tively little is known about the early acquisition and role 
of anti-Plasmodium spp. antibodies in young children, 
how such responses compare to responses in older chil-
dren/adults, or those from different transmission inten-
sity areas [7–11]. The investigation of antigenic targets 
and their potential as vaccine candidates or biomarkers 
of exposure in naturally exposed populations has been 
mainly restricted to P. falciparum and very few P. vivax 
merozoite proteins [7–11].

In malaria parasites, glycosylphosphatidylinositol (GPI) 
is a glycolipid highly conserved across different species 
[12]. In Plasmodium spp., GPI can be found both free and 
as an anchor sustaining many proteins on the parasite’s 
membrane, including merozoite surface and rhoptry pro-
teins, as well as many other vaccine candidates and pro-
teins of unknown function [12]. In humans, GPI is known 
to induce strong humoral response, promote the expres-
sion of genes of pro-inflammatory compounds (includ-
ing tumour-necrosis factor (TNF), interleukin-1 [IL-1] 
and IL-12), nitric oxide, and adhesion molecules on the 
surface of the vascular endothelium, which can be recog-
nized by P. falciparum erythrocyte membrane protein 1 
(PfEMP1), contributing to the development of anaemia 
and severe malaria [13, 14].

It has been consistently demonstrated that GPIs puri-
fied from P. falciparum are recognized by plasma/serum 
from people living in malaria-endemic areas however, 
the quality of GPIs purified from P. falciparum might 
have led to controversial results [15, 16]. Cross-reactivity 
between antibodies raised against P. falciparum GPI and 
P. vivax is expected, as despite having a high complex-
ity that allows various chemical modifications and high 
functional diversity, the core of the GPI glycan structure 
is evolutionary highly conserved in different species [17]. 
Only limited structural variability (in fatty-acid compo-
sition or glycosylation) or antigenic variation have been 
described [18–21] in comparison to the many allelic 
polymorphisms identified in merozoite surface proteins 
[22–24], and the consequent high antigenic variation 
[25–27].

To date, the association between the levels of antibod-
ies to GPI and the risk of malaria clinical disease remains 
poorly explored. To address this gap, this study aimed 
to measure total IgG levels to a synthetic glycan cor-
responding to P. falciparum GPI (PfGPI) in a cohort of 
children aged 1–3 years from Papua New Guinea (PNG), 
exploring the associations between antibody levels and 
prospective risk of malaria. Individual differences in 
exposure to Plasmodium spp. blood-stage infections have 
been well characterized by molecular genotyping [28, 29], 
and children have been shown to had acquired immu-
nity to P. vivax, but no yet to P. falciparum [28–30]. The 
potential use of IgG to PfGPI as a serological biomarker 
of immune status to both P. falciparum and P. vivax para-
sites was investigated.

Methods
Antigen
The synthetic glycan PfGPI described by Schofield et al. 
[31] was used. As the glycan was conjugated to bovine 
serum albumin (BSA), BSA alone was included as a 
control.

Study samples
Antibody reactivity to PfGPI in naturally exposed indi-
viduals was assessed in samples from a longitudinal 
cohort of 264 children (1–3  years old) undertaken in 
Ilaita, East Sepik Province, PNG [30]. Children were 
enrolled between March and September 2006, and fol-
lowed for up to 16 months. Blood samples were collected 
every 8 weeks and at episodes of febrile illness. All P. fal-
ciparum and P. vivax infections were genotyped, allowing 
the determination of the incidence of genetically distinct 
blood-stage infections acquired during follow-up (i.e. the 
molecular force of blood-stage infections, molFOB) [28, 
29]. Paired samples collected at cohort follow-up start 
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and end from 223 children were included in the present 
study (median age 1.8, IQR 1.3–2.5 years).

Antibody measurement
Total IgG was measured using an enzyme-linked immu-
nosorbent assay (ELISA). Nunc 96-well plates (Thermo 
Scientific) were coated with GPI conjugated to BSA or 
BSA alone diluted to 10  ng/well in phosphate-buffered 
saline (PBS) pH 7.2, and incubated overnight at 4  °C. 
The next day, the plates were washed 3 times in PBS and 
blocked with PBS + 5% milk for 1 h at 37 °C. Plates were 
then washed 3 times in PBS  +  0.05% Tween-20, and 
plasma samples from PNG children and controls diluted 
1:125 in PBS + 1% milk + 0.05% Tween-20 were assayed 
in duplicate, with incubation overnight at 4  °C. On the 
third day, plates were washed 5 times in PBS +  0.05% 
Tween-20 and the secondary antibody horseradish per-
oxidase-conjugated mouse anti-human IgG (Southern 
biotech) diluted 100 ng/well in PBS + 1% milk + 0.05% 
Tween-20 was added, followed by incubation for 2  h at 
room temperature. Finally, plates were washed 5 times 
in PBS  +  0.05% tween and TMB peroxidase substrate 
(KPL) added and incubated for 1 min and 30 s until col-
our developed. 1  M phosphoric acid (Sigma) was used 
to stop the reaction and absorbance was read at 450 nm. 
Plasma from seven Australian adults, and a serial dilution 
of a plasma pool from hyper-immune PNG adults were 
included as negative and positive controls, respectively. 
Paired samples from the same individual collected at 
study start and end were run on the same plate.

Statistical analysis
Background values due to reactivity to BSA were sub-
tracted and duplicate wells averaged. Associations with 
parasite density were determined using Spearman’s 
rank correlation. Optical density (OD) values were 
 log10-transformed and differences in mean antibody 
levels by age, infection status, and between samples col-
lected at start and end of follow-up were assessed using 
ANOVA or 2-tailed t tests (paired when necessary). Neg-
ative binomial generalized estimating equation (GEE) 
models with exchangeable correlation structure and 
semi-robust variance estimator were used to analyze the 
relationship between antibodies to PfGPI and prospec-
tive risk of P. falciparum and P. vivax episodes (defined as 
axillary temperature ≥ 37.5  °C or history of fever in the 
preceding 48  h with a concurrent parasitaemia >  2500 
and >  500 P. falciparum and P. vivax/μL, respectively) 
over the 16 months of follow-up [11]. In order to inves-
tigate this, antibody levels were classified into tertiles 
(cut-off values are given on Table 1), and analyses carried 
out comparing the incidence rate ratio (IRR) of clinical 
malaria in those with medium and high antibody levels 
versus low. Children were considered at risk from the 
first day after the blood sample for active follow-up was 
taken. For each child, the molFOB was calculated as the 
number of new blood-stage genetically distinct P. falcipa-
rum or P. vivax clones acquired/year-at-risk, and square-
root transformed for a better fit [28, 29]. Adjustments 
were made for seasonal trends, village of residency, age, 
haemoglobin levels, Gerbich blood type, and molFOB. 

Table 1 Seroprevalence of IgG antibodies to PfGPI in Papua New Guinean children

P values from paired 2-tailed t tests or Chi squared tests. P < 0.05 were deemed statistically significant

95% CI 95% confidence interval
a Optical density at 450 nm

Study start Study end P value
IgG  levela in children (% of adult levels)

Geometric mean
95% CI

0.096 (13.87) 0.108 (15.62) 0.11

0.083 (11.99) 0.093 (13.44)

0.110 (15.90) 0.127 (18.35)

Cut-offa low antibody group 0.061 (8.75)

Cut-offa medium antibody group 0.135 (19.53)

Study start Study end
Prevalence in children (%)

% of adult levels (cut-offa)

 1% (0.007) 223 (100) 223 (100)

 5% (0.035) 200 (89.67) 196 (87.89) 0.55

 10% (0.069) 133 (59.64) 144 (64.57) 0.28

 25% (0.173) 55 (24.66) 71 (31.84) 0.09

 50% (0.346) 26 (11.66) 36 (16.14) 0.17
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All analyses were performed using STATA version 12 
(StataCorp).

Results
IgG antibodies to PfGPI in young PNG children
IgG seroprevalence to PfGPI was relatively low at the 
study start. It was assumed that the pooled serum from 
immune PNG adults represented the highest antibody 
levels to PfGPI achievable under natural exposure and, 
therefore, by comparison with IgG levels observed in 
PNG children, the number of children that had already 
achieved IgG levels that were > 50, > 25 or > 10% of the 
maximum adult levels (Table 1) was determined. At this 
time point, only 11.7 and 59.6% of the PNG children 
had acquired IgG levels that were > 50 and > 10% of the 
immune adult levels (Table 1).

Overall, although the 1–3  years old children tested 
in this study had acquired low levels of antibodies to 
PfGPI, the response observed was directed and sig-
nificantly higher to PfGPI (mean OD to GPI after BSA 

subtraction =  0.18, 95% CI 0.14–0.21) than to the BSA 
tag alone (mean OD to BSA alone = 0.08, 95% CI 0.07–
0.09, P = 0.009) (Additional file 1).

Influence of age and exposure to malaria parasites
At study start, there was no association between age 
and IgG levels to PfGPI (P = 0.53) (Table 2). An increase 
in IgG levels with age was only observed in children 
>  24  months old and free of P. falciparum infection 
(detected by PCR) at the moment of sample collection 
(P  =  0.009), suggesting that antibodies to PfGPI are 
reflective of recent malaria infections. Children with 
a current P. falciparum (P =  0.084, n =  112) (although 
only moderately), P. vivax (P = 0.036, n = 125) or mixed 
infection (P. falciparum + P. vivax) (P = 0.004, n = 65) 
had higher antibody levels than children infection-free 
(Table 2). There were however, no associations between 
IgG levels and P. falciparum or P. vivax parasite densities 
(rho = 0.09, P > 0.18). Children with the highest IgG lev-
els were also more likely to have a P. falciparum (Odds 

Table 2 Influence of age and exposure on antibody levels to PfGPI in Papua New Guinean children

Geom mean, geometric mean; n, number; 95% CI, 95% confidence interval; Pf, Plasmodium falciparum; Pv, Plasmodium vivax

* Optical density at 450 nm. IgG levels were log10 transformed and P values calculated using two sample t tests or ANOVA. P < 0.05 were considered significant

P. falciparum P. vivax

n Geom mean (95% CI)* P value n Geom mean (95% CI)* P value

Age (months)

 All children

  12–17 81 0.091 (0.074–0.111) 0.53

  18–23 49 0.083 (0.061–0.114)

  24–29 38 0.117 (0.080–0.170)

  30–35 45 0.108 (0.075–0.155)

  36–41 10 0.081 (0.032–0.204)

 PCR−
  12–17 55 0.076 (0.060–0.097) 0.009 37 0.067 (0.051–0.087) 0.221

  18–23 22 0.053 (0.036–0.078) 19 0.074 (0.043–0.128)

  24–29 14 0.160 (0.079–0.323) 18 0.126 (0.086–0.185)

  30–35 16 0.113 (0.062–0.207) 19 0.083 (0.047–0.146)

  36–41 4 0.155 (0.014–1.737) 5 0.087 (0.049–0.156)

 PCR+
  12–17 26 0.131 (0.090–0.192) 0.43 44 0.118 (0.088–0.157) 0.69

  18–23 27 0.120 (0.078–0.186) 30 0.090 (0.060–0.133)

  24–29 24 0.097 (0.062–0.153) 20 0.109 (0.056–0.210)

  30–35 29 0.106 (0.065–0.170) 26 0.131 (0.080–0.215)

  36–41 6 0.053 (0.018–0.154) 5 0.075 (0.007–0.773)

Infection status

 PCR− 111 0.085 (0.070–0.103) 0.084 98 0.081 (0.067–0.098) 0.036

 PCR+ 112 0.108 (0.088–0.133) 125 0.109 (0.089–0.134)

 Infection free 51 0.061 (0.047–0.077) 0.004

 Pf and Pv co-infected 65 0.107 (0.079–0.144)
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ratio [OR] 2.77, 95% CI 1.43–5.38, P = 0.003) or P. vivax 
(OR 1.91, 95% CI 0.99–3.70, P = 0.055) infection in the 
following 2 months.

Due to the small age range in this cohort, however, 
the number of genetically distinct blood-stage para-
sites that each child acquired over time (i.e. the mol-
FOB) is a better proxy for exposure to malaria than age 
alone [28, 29]. Thus, calculating life-time exposure as a 
product of age and molFOB, an increase in IgG levels to 
PfGPI was found with increasing life-time exposure to 
P. vivax blood-stage infections (Spearman’s rho =  0.15, 
P = 0.026), with stronger effects observed in children free 
of P. vivax infections at sample collection (rho =  0.23, 
P = 0.026).

The risk of malaria infection was heterogeneously dis-
tributed across the different villages where the study was 
conducted [30]. Anti-PfGPI antibody levels did reflect 
such differences, and IgG levels were significantly dif-
ferent when grouping individuals by village of residence 
(P  =  0.025) (Additional file  2). Individuals living in 
the villages Ilaita 2 and 6 (P =  0.06–0.007, n =  10 and 
12, respectively), and Sunuhu 1 (P = 0.004, n = 36) had 
higher IgG levels to PfGPI. These regional differences 
were significant if children were co-infected (P = 0.048) 
or infected with P. vivax (P  =  0.001), but not in the 
absence of infection (P > 0.3) (Additional file 2). Similar 
differences in antibody levels to P. falciparum AMA1 and 
MSP2 within these regions have been described [7].

Anti‑PfGPI antibodies and morbidity
Anti-PfGPI antibodies were strongly associated with 
morbidity. IgG levels were negatively correlated with 
haemoglobin levels (rho = − 0.18, P = 0.007), (Fig. 1a), 
and elevated IgG levels were present in those with a pal-
pable, enlarged spleen (P  =  0.037) (Fig.  1b). Similarly, 
children with a current clinical episode by P. falciparum 
(P = 0.010), but not P. vivax (P = 0.21), had higher IgG 
levels than uninfected or asymptomatically infected 
children (Fig. 1c). Interestingly, there was a strong asso-
ciation between anti-PfGPI antibodies and the children’s 
Gerbich blood type. The few Gerbich homozygote chil-
dren had the highest IgG levels (P = 0.001) (Fig. 1d).

IgG antibodies to PfGPI and prospective risk 
of falciparum‑malaria
Over the 16 months of follow-up, each child in the sub-
group tested had an average of 1.54 (95% CI 1.38–1.73) 
P. falciparum clinical episodes with >  2500 parasites/
μL/year-at-risk. Following adjustment for age, seasonal 
and spatial differences in malaria transmission, Gerbich 
blood type and haemoglobin levels, high levels of IgG 
to PfGPI were associated with an increased risk of hav-
ing P. falciparum-malaria (Incidence rate ratio for high 

versus low group  [IRRH] 1.36, P =  0.027) (Fig.  2; Addi-
tional file 3). The risk increased for clinical episodes with 
higher parasite densities: >  10,000 parasites/μL  (IRRM 
1.35, P = 0.044 and  IRRH 1.42, P = 0.028), > 50,000 para-
sites/μL  (IRRM 1.80, P = 0.004) (Fig. 2; Additional file 3). 
Once adjusted for individual differences in exposure to P. 
falciparum infections (molFOB), the strength and signifi-
cance of the associations were decreased or became no 
longer significant (> 2500:  IRRH 1.26, P = 0.07; > 10,000: 
 IRRM 1.17, and  IRRH 1.29, P = 0.08–0.26; > 50,000:  IRRM 
1.59, P = 0.018) (Additional file 3), indicating that in this 
age group, high IgG levels to PfGPI are markers of chil-
dren who had higher exposure to P. falciparum parasites, 
which consequently led to a higher risk of having clinical 
disease.

IgG antibodies to PfGPI and prospective risk 
of vivax‑malaria
The average of clinical episodes caused by P. vivax 
(>  500 parasites/μL) was 1.22 (95% CI 1.05–1.42) per 
year-at-risk. In contrast to that observed for P. falcipa-
rum-malaria, after adjustments for confounders and dif-
ferences in individual exposure to P. vivax blood-stage 
infections, high IgG levels to PfGPI were associated with 
a modestly reduced risk of vivax-malaria  (IRRH 0.72, 
P = 0.049) (Fig. 2; Additional file 3). As for P. falciparum, 
the associations with protection tended to be stronger for 
clinical episodes with higher parasite density, although 
not of statistical significance given the reduced power 
(> 2000 parasites/μL  IRRH 0.68, P = 0.057; > 10,000 para-
sites/μL  IRRH 0.59, P = 0.094) (Fig. 2; Additional file 3). 
These results indicate that high levels of IgG to PfGPI in 
this age group are also markers of acquired immunity to 
P. vivax.

Antibodies to PfGPI after 16 months
At the end of the 16  months of follow-up, 64.6 and 
16.1% of the children had reached IgG levels that were 
>  10 and  >  50% of the IgG levels observed in the adult 
immune pool (Table  1). Although slightly higher, anti-
body levels were very similar (rho = 0.57, P < 0.001) and 
this seroprevalence was not statistically different than the 
observed at the study start (P > 0.17), suggesting that in 
this age group, anti-PfGPI antibodies are short-lived or 
unstable.

At the end of the study, there was no association 
between IgG levels and age (P  >  0.18), life-time expo-
sure (P > 0.20), P. falciparum or P. vivax infection status 
(P > 0.05) (Additional file 4). No difference in IgG levels 
was observed between children who experienced a clini-
cal episode in the last 2 months and those who did not 
(P > 0.18), or by the number of clinical episodes that each 
child had over the follow-up period for P. falciparum or 
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P. vivax (P > 0.31) (Additional file 4). Similarly, there was 
no difference in IgG levels at the end of the follow-up 
between children who did and who did not experience 
severe malaria during follow-up (n = 24, P = 0.97).

At the end of the study, the only factor associated with 
differences in antibody levels was village of residency for 
those currently co-infected (P = 0.046) or with a P. vivax 
infection (P = 0.008) (Additional file 2).

Discussion
A better understanding of the acquisition of immunity 
to malaria parasites in different age groups and trans-
mission settings is essential for the identification of 
antigens useful as biomarkers of exposure/immunity, or 
with potential for vaccine development—especially for P. 
vivax, since a continuous in  vitro culture system is still 
inexistent [4, 5]. In the present study, antibody levels to a 

Fig. 1 IgG to PfGPI and clinical symptoms in Papua New Guinean children. a Scatterplot of total IgG levels (optical density at 450 nm) versus 
haemoglobin levels (g/dL) (n = 223) with a Lowess smoothed fitted curve. P values and rho are from Spearman’s rank correlation. Box plots show 
median IgG levels (black bar), minimum and maximum (whiskers) and outliers (open circles) by b presence of enlarged spleen (n = 59); c cur-
rent clinical episode of any density by P. falciparum (n = 65) or P. vivax (n = 70); d Gerbich blood type 1 = wild-type (n = 83), 2 = heterozygote 
(n = 111), 3 = homozygote (n = 29). P values are from ANOVA or 2 sample t tests
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synthetic glycan correspondent to PfGPI [31] was meas-
ured in a cohort of children 1–3 years old from PNG [30], 
exploring the associations between antibody levels and 
risk of P. falciparum and P. vivax-malaria.

Despite the very high transmission intensity in East 
Sepik Province when the cohort study was conducted 
[30], seroprevalence of antibodies to PfGPI was low in 
this age group. Similar low seroprevalence have been 
described in children <  6  years from Madang Province 
in PNG [32], as well as in Indonesia [33], Kenya [18] and 
Gambia [34]. One explanation for this is the low ability 
of the immune system of very young children (< 2 years 
old) in producing antibodies against carbohydrate anti-
gens [35]. This also suggests that the majority of GPI that 
the immune system has access to and thus can produce 
antibodies to is the free form, rather than the form that 
anchors proteins to the parasite membrane. If physically 
attached to their GPI anchors, parasite surface proteins 
might be expected to provide T cell help for anti-GPI 
antibody production [15]. Although not observed in the 
young children included in the study, seroprevalence and 
magnitude of antibody responses to PfGPI have been 
described to increase with age and decline with parasite 
density in PNG [32] and Kenyan adults [18].

For the young children included in this study, recent P. 
falciparum and P. vivax infections were the main deter-
minant of antibody levels to GPI. The rapid although 
transient peaks in antibody levels in the presence of a 

current infection might suggest that they are generated 
by the differentiation of naive B-cells into short-lived 
plasma cells driven by the concurrent infection rather 
than by long-lived plasma cells generated from previ-
ous infections, as previously described for malarial pro-
tein antigens [36]. Given the absence of peptide epitopes 
for conventional T cells, antibodies to free GPI are likely 
to be T cell-independent during the first malaria infec-
tions [15]. Although they can stimulate antigen-specific 
B cells, memory is not generated, and accessory cells 
(e.g. macrophages and dendritic cells) and co-stimula-
tory signals (e.g. IL-1) are thus required for an effective 
immune response [37]. Later with increasing exposure, 
or if attached to an immunogenic carrier, however, GPI 
might be taken up by follicular B cells, be processed and 
presented on cell surface major histocompatibility com-
plex class II (MHCII) molecules, where they may engage 
peptide-specific T cells [15, 35]. Memory B cells can thus 
be generated during this T cell-dependent process, and 
be re-activated upon future stimulation [35].

Children with homozygote Gerbich blood type (Ger-
bich negative) had higher antibody levels to PfGPI than 
heterozygote or wild type children. The Gerbich antigen 
is expressed on glycophorins C (GPC) and D (GPD) [38], 
and both GPC/D interact with the 4.1 R protein com-
plex and contribute to the stability of the erythrocyte 
membrane [38, 39]. A high incidence of Gerbich nega-
tive in PNG been hypothesized as an advantage against 

Fig. 2 IgG to PfGPI and risk of falciparum and vivax-malaria in Papua New Guinean children. Data are plotted as incidence rate ratios and 95% con-
fidence intervals over 16 months of follow-up, adjusted for age, season, village of residency, haemoglobin levels and Gerbich blood type (n = 223). 
Black and white circles represent children with medium and high antibody levels, respectively. Clinical malaria was defined as axillary temperature 
≥ 37.5 °C or history of fever in the preceding 48 h with a current P. falciparum parasitemia of > 2500 (n = 383); > 10,000 (n = 315); and > 50,000 
parasites/μL (n = 175); and P. vivax > 500 (n = 301); > 2000 (n = 207); and > 10,000 parasites/μL (n = 90). IRR, 95% confidence intervals and P values 
are from negative binomial GEE models
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infection and severe malaria [40, 41]. While it was found 
that deletion of the exon 3 result in Gerbich negativity 
and make P. falciparum unable to invade erythrocytes 
using the erythrocyte binding protein 140 [EBA140] [39, 
42], to date, clinical studies have not been able to show 
a consistent association between risk of malaria and 
this phenotype [43–45]. Further in-depth studies will be 
required to elucidate whether the interaction between 
Gerbich genotype, reduced parasite invasion and slower 
parasite growth result in increased host immune-
responses (including to PfGPI), and whether this may 
indeed combine to provide protection against P. falcipa-
rum or P. vivax malaria [46].

In young PNG children, high antibody levels to PfGPI 
were associated with higher risk of P. falciparum malaria. 
In contrast, they were also associated with reduced risk 
of P. vivax malaria. This accurately reflects the different 
levels of naturally acquired immunity to the two spe-
cies in this cohort: while in these children incidence of 
P. vivax episodes significantly decreases starting in the 
2nd year of life, the burden of P. falciparum infection 
continues to increase until the 4th year of life [30]. This 
difference is related to a significantly higher exposure to 
P. vivax than P. falciparum blood-stage infections, i.e. P. 
vivax molFOB was considerably higher than P. falcipa-
rum molFOB (14 versus 5.5 parasite clones/child/year-
at-risk, respectively). This high number of P. vivax clones 
that infect children in early childhood thus contribute to 
a very rapid acquisition of immunity to clinical P. vivax 
malaria, not yet reached for P. falciparum [29, 30]. Acqui-
sition of immunity to P. falciparum in high transmission 
settings such as PNG is achieved a number of years later 
(~ 10 years old) with increasing exposure to P. falciparum 
infections [7, 8]. Anti-PfGPI antibodies in this age group 
seem to be an accurate reflection of the children’s cur-
rent immune-status to both P. falciparum and P. vivax 
malaria, acting as both a biomarker of increased risk of 
P. falciparum, able to identify individuals with the high-
est level of exposure to P. falciparum recent infections, as 
well as a biomarker of acquired immunity to P. vivax.

In 2002, a study in rodent models firstly showed that 
antibodies raised against PfGPI were able to delay mortal-
ity by Plasmodium berghei, demonstrating proof of con-
cept for a GPI-based anti-toxic malaria vaccine [31]. The 
antagonists of GPI-mediated signaling and murine mono-
clonal antibodies against PfGPIs were shown to be able 
to block the induction of toxic responses, also suggesting 
that GPI-based therapy is possible [47, 48]. In more recent 
studies, GPI was found to be present across all stages of 
the malaria parasites life cycles. Furthermore, in a pre-clin-
ical evaluation of a GPI-based vaccine in P. berghei mod-
els, the vaccine showed efficacy in sporozoite challenges, 
was able to reduce parasite replication and transmission 

to mosquitoes (unpublished data, Schofield.) Altogether, 
these findings suggest that a GPI vaccine may be able to 
prevent both blood-stage and liver infections, disease and 
block transmission of parasite from human to mosquito, 
thus acting as a unique carbohydrate multi-stage, multi-
parasite vaccine. Consistent with this, high levels of the 
anti-GPI antibodies have been correlated with resistance 
to clinical symptoms, such as anaemia and fever [18], and 
lower levels observed among Senegalese adults with cer-
ebral malaria compared to individuals with uncomplicated 
malaria [49]. Although anti-PfGPI antibodies are short-
lived or intermittent in very young children, older children 
and adults seem to be able to sustain high antibody levels 
for longer [18, 32–34, 50]. Furthermore, GPI low immuno-
genicity in young children and can be overcome if the anti-
gen is conjugated to a protein carrier, which can also help 
stimulation of B-cell memory formation [35]. Future func-
tional studies are now necessary to confirm whether anti-
PfGPI antibodies contribute to the protection observed 
against P. vivax, or only act as a mirror of the protection 
conferred by antibodies to other antigenic targets.

This study highlights anti-PfGPI antibodies as a pos-
sible biomarker of anti-malaria immunity in very young 
children. Further studies including older age groups 
will confirm its utility as a biomarker of immunity for P. 
vivax, and whether they will indeed also reflect acquired 
immunity to P. falciparum.

Conclusions
The findings of this study highlight IgG to PfGPI as 
potentially useful serological biomarkers of immune-sta-
tus in young children to help malaria control programs 
identify populations at risk. Additional studies includ-
ing older age groups will confirm the utility of these 
responses as a biomarker of immunity to P. vivax, and 
whether they will indeed also reflect acquired immunity 
to P. falciparum. Future functional studies are also neces-
sary to confirm whether anti-PfGPI antibodies contribute 
to the protection observed against P. vivax, or only act 
as a mirror of the protection conferred by antibodies to 
other antigenic targets.
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