7,457 research outputs found
Long-term change in benthopelagic fish abundance in the abyssal northeast Pacific Ocean
Food web structure, particularly the relative importance of bottom-up and top-down control of animal abundances, is poorly known for the Earth's largest habitats: the abyssal plains. A unique 15-yr time series of climate, productivity, particulate flux, and abundance of primary consumers (primarily echinoderms) and secondary consumers (fish) was examined to elucidate the response of trophic levels to temporal variation in one another. Towed camera sled deployments in the abyssal northeast Pacific (4100 m water depth) showed that annual mean numbers of the dominant fish genus (Coryphaenoides spp.) more than doubled over the period 1989-2004. Coryphaenoides spp. abundance was significantly correlated with total abundance of mobile epibenthic megafauna (echinoderms), with changes in fish abundance lagging behind changes in the echinoderms. Direct correlations between surface climate and fish abundances, and particulate organic carbon (POC) flux and fish abundances, were insignificant, which may be related to the varied response of the potential prey taxa to climate and POC flux. This Study provides a fare opportunity to study the long-term dynamics of an unexploited marine fish population and Suggests a dominant role for bottom-up control in this system
Potential Use of Crab Processing Waste as a Bait for Whelks (Buccinum Undatum) and European Lobsters (Homarus Gammarus)
Ubic: Bridging the gap between digital cryptography and the physical world
Advances in computing technology increasingly blur the boundary between the
digital domain and the physical world. Although the research community has
developed a large number of cryptographic primitives and has demonstrated their
usability in all-digital communication, many of them have not yet made their
way into the real world due to usability aspects. We aim to make another step
towards a tighter integration of digital cryptography into real world
interactions. We describe Ubic, a framework that allows users to bridge the gap
between digital cryptography and the physical world. Ubic relies on
head-mounted displays, like Google Glass, resource-friendly computer vision
techniques as well as mathematically sound cryptographic primitives to provide
users with better security and privacy guarantees. The framework covers key
cryptographic primitives, such as secure identification, document verification
using a novel secure physical document format, as well as content hiding. To
make a contribution of practical value, we focused on making Ubic as simple,
easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science,
pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German
A Bioeconomic Model for Management of Orange Roughy Stocks
The paper reports the results of a bioeconomic analysis of the exploitation of a recently discovered orange roughy stock located off Tasmania. The parameters of the model are based on the experience derived from the orange roughy fisheries in New Zealand where stocks have been heavily exploited. The model is used to predict the open-access equilibrium stock, and to calculate the stock which maximizes the net present value and the stock level consistent with the F,,, Rule. Assuming a linear approach path, the net present value of the fishery at each of these stocks is calculated. The results are used to estimate the benefit of management and the cost of a conservative stock policy. It is suggested that the results will contribute to the development of a management policy for the Tasmanian stock, and for stocks which are likely to be discovered elsewhereFishery management, bioeconomic model, orange roughy, Environmental Economics and Policy, Production Economics,
The Scottish Nephrops Survey Phase II: The Processes that Underlie Quality Loss in the Whole Animal Compared to the Tailed Product
Hierarchical Gaussian process mixtures for regression
As a result of their good performance in practice and their desirable analytical properties, Gaussian process regression models are becoming increasingly of interest in statistics, engineering and other fields. However, two major problems arise when the model is applied to a large data-set with repeated measurements. One stems from the systematic heterogeneity among the different replications, and the other is the requirement to invert a covariance matrix which is involved in the implementation of the model. The dimension of this matrix equals the sample size of the training data-set. In this paper, a Gaussian process mixture model for regression is proposed for dealing with the above two problems, and a hybrid Markov chain Monte Carlo (MCMC) algorithm is used for its implementation. Application to a real data-set is reported
Formal Derivation of Concurrent Garbage Collectors
Concurrent garbage collectors are notoriously difficult to implement
correctly. Previous approaches to the issue of producing correct collectors
have mainly been based on posit-and-prove verification or on the application of
domain-specific templates and transformations. We show how to derive the upper
reaches of a family of concurrent garbage collectors by refinement from a
formal specification, emphasizing the application of domain-independent design
theories and transformations. A key contribution is an extension to the
classical lattice-theoretic fixpoint theorems to account for the dynamics of
concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the
Proceedings of MPC 201
Effect of FET geometry on charge ordering of transition metal oxides
We examine the effect of an FET geometry on the charge ordering phase diagram
of transition metal oxides using numerical simulations of a semiclassical model
including long-range Coulomb fields, resulting in nanoscale pattern formation.
We find that the phase diagram is unchanged for insulating layers thicker than
approximately twice the magnetic correlation length. For very thin insulating
layers, the onset of a charge clump phase is shifted to lower values of the
strength of the magnetic dipolar interaction, and intermediate diagonal stripe
and geometric phases can be suppressed. Our results indicate that, for
sufficiently thick insulating layers, charge injection in an FET geometry can
be used to experimentally probe the intrinsic charge ordering phases in these
materials.Comment: 4 pages, 4 postscript figure
An energy vision for a planet under pressure
Worldwide, global energy systems face an array of challenges, from access for the poor to reliability and security. Meanwhile, the provision of energy creates local human and ecological health impacts as well as dangerous global climate change. Addressing these issues simultaneously will require a fundamental transformation of the energy system. Recent assessments show that such a transformation is achievable in technological and economic terms, but it will present formidable supply- and demand-side challenges as well as problems of governance, transparency and reliability across scales.
This policy brief presents a long-term vision for the energy system and describes the elements required for the transition towards this vision. To succeed, this transformation must integrate several key components, including a focus on high levels of energy efficiency and the scale up of investments in technology deployment as well as research, development and demonstration (RD&D)
- …
