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Abstract. Concurrent garbage collectors are notoriously difficult to im-
plement correctly. Previous approaches to the issue of producing correct
collectors have mainly been based on posit-and-prove verification or on
the application of domain-specific templates and transformations. We
show how to derive the upper reaches of a family of concurrent garbage
collectors by refinement from a formal specification, emphasizing the
application of domain-independent design theories and transformations.
A key contribution is an extension to the classical lattice-theoretic fix-
point theorems to account for the dynamics of concurrent mutation and
collection.

1 Introduction

Concurrent collectors are extremely complex and error-prone. Since such collec-
tors now form part of the trusted computing base of a large portion of the world’s
mission-critical software infrastructure, such unreliability is unacceptable [21].
The challenge has been to find a way to provide mathematical assurance of
the correctness of concurrent collectors without doing harm to the productivity
of the programmers. The latter aspect still is a major obstacle in verification-
oriented systems. Interactive theorem provers may need thousands of lines of
proof scripts or hundreds of lemmas in order to cope with serious collectors (see
e.g. [10,15,4]). But also fully automated verifiers exhibit problems. As can be
seen in [6], even the verification of a simplified collector necessitates such a large
amount of complex properties that the specification may easily become faulty
itself. The problem of assurance also has to deal with the fact that garbage col-
lectors come in many variations, each addressing specific quality or efficiency
goals. Separate verification of each variation leads to a tremendous duplication
of work. On the other hand it is extremely difficult to determine for a slightly
modified algorithm, which properties and proofs can remain unchanged, which
are superfluous, and which need to be added or redone.

We propose to apply the approach of specification refinement as illustrated in
Figures 1 and 2. This approach has already been successfully applied to complex
problems, such as planning and scheduling tasks [19]. Figure 1 describes the way
in which we come from abstract problems to concrete solutions.
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(1) Suppose we have an abstract problem description, that is, a collection of
types, operations and properties that together describe a certain problem.
(2) For this abstract problem we then develop an abstract solution, that is, an
abstract implementation that fulfills all the requested properties.
(3) When we now have a concrete problem that is an instance of our abstract
problem (since it meets all its properties), then we can
(4) automatically derive a concrete solution by instantiating the abstract solution
correspondingly.
The abstract problem/solution pairs can be organized into a taxonomic library
[17] in formal development environments such as KIDS [16] and Specware [7].
We will consider the abstract problem of finding fixed points in lattices or cpos
and several solutions for this problem. Then we will show that garbage collection
is an instance of this abstract problem by considering the concrete graphs and
sets as instances of the more abstract lattices. This way our abstract solutions
carry over to concrete solutions for the garbage collection problem.
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Fig. 1. Abstract and concrete problems and their solutions

Technically, all of our problem and solution descriptions are algebraic and coal-
gebraic specifications, which are usually underspecified and thus possess many
models. “Solutions” are treated as borderline cases of such specifications, which
are directly translatable into code of some given programming language. The
formal connections between the various specifications are given by certain kinds
of refinement morphisms, and the derivation of the concrete solution from the
other parts is formally a pushout construction from category theory1.

Figure 2 illustrates the second essential aspect of our method. We work with a
family tree (or dag) of more and more refined problems, each giving rise to more
and more refined solutions. On the problem side “refined” essentially means that
we have additional properties, on the solution side “refined” essentially means that
we have better algorithms, e.g. more efficient, more robust, more concurrent etc.
1 A morphism Φ from specification S to specification T is given by a type-consistent

mapping of the type, function, and predicate symbols of S to derived types, functions,
and predicates in T . The mapping is a specification morphism if the axioms of S
translate to theorems of T . A pushout construction is used to compose specifications.
More detail on the category of specifications may be found in [18,7,12].
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Fig. 2. Refinement of problems (and solutions)

This way of proceeding has the primary advantage that it allows us to reuse
verification and development efforts. Suppose that at some point in the tree we
want to design a new variation. This is reflected in a new refinement child of the
current specification, to which certain properties are added. In the modified new
solution we need only prove those properties that have been added; everything
else is inherited.

Vechev et al. [21] have a similar goal of presenting a derivational treatment
of a family of concurrent garbage collectors. They start from a generic algo-
rithm, which is parameterized by an underspecified function, such that different
instantiations of this function lead to different collection algorithms. A primary
concern of [21] is the possibility to combine various “design dimensions” in a very
flexible way. By contrast, we study the family tree of specifications and imple-
mentations that can be systematically derived using formal refinements that are
largely problem-independent. We base the whole treatment of garbage collection
on fundamental mathematical principles, namely lattices and fixed points. This
means that the same design theories can be applied to a wide range of other
problems. A key result of our studies was a generalization of classical fixed-point
results of lattice theory to handle the dynamics of concurrency; i.e. iterating to
a fixpoint with a monotone function that is changing over time.

The final efficiency of most practical garbage collection algorithms depends
on the use of clever data representations. Standard techniques range from the
classical stacks or queues to bit maps, overlayed pointers, so-called dirty bits,
color toggling, concurrent local structures, and so forth. In our approach all
these designs fall under the paradigm of data reification morphisms. This means
that we can work throughout our developments with high-level abstract data
structures such as graphs and sets in order to specify and verify the algorithmic
aspects in the clearest possible way. It will be only at the end of the derivation
that the high-level data structures are implemented by concrete data structures,
which are chosen based on their efficiency in the given context. This step is
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automated in systems like Specware [7], together with many low-level optimiza-
tions. Since this is very technical and can be done almost automatically by
advanced systems, we will only touch this part very briefly and sketchy here.

Full derivation of practical algorithms requires many more transformations
than we can show here. We focus on the crucial initial refinement steps from a
formal specification of concurrent garbage collection toward a variety of impor-
tant and practical algorithms. An expanded version of this paper treats more
aspects of contemporary concurrent garbage collectors [13].

2 Notes on Garbage Collection

The very first garbage collectors, which essentially go back to McCarthy’s orig-
inal design [9], were stop-the-world collectors. That is, the Mutator was com-
pletely laid to sleep, while the Collector did its recycling. This approach leads to
potentially very long pauses, which are nowadays considered to be unacceptable.

The idea of having the Collector run concurrently with the Mutator goes
back to the seminal papers of Dijkstra et al. [3] and Steele [20], which were
followed by many other papers trying to improve the algorithm or its verification.
The Doligez-Leroy-Gonthier algorithm (short: DLG) that was developed for the
Concurrent CAML Light system [4,5], is considered an important milestone,
since it not only takes many practical complications of real-world collectors into
account, but also generalizes from a single Mutator to many Mutators. The
transition to concurrent garbage collection necessitates a trade-off between the
precision of the Collector and the degree of concurrency it provides [21]: the
higher the degree of concurrency, the more garbage nodes will be overlooked.
However, this is no major concern in practice, since the escaped garbage nodes
will be found in the next collection cycle.

A B

C D

E

Fig. 3. At the start of the Collector

We now illustrate the key problem that can arise in concurrent garbage collec-
tion. Figure 3 illustrates the situation at the beginning of the collection process
by showing a little fragment of the store; solid nodes are reachable from the
root A, dashed circles represent dead garbage nodes (the arcs of which are not
drawn here for the sake of readability). We use the metaphor of “planes” to
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illustrate both mark-and-sweep and copying collectors. In the former, “lifting”
a node to the upper plane means marking, in the latter it means copying. The
picture already hints at a later generalization, where the store is partitioned into
“regions”.

Figure 4 shows an intermediate snapshot of the algorithm. Some nodes and
arcs are already lifted (i.e. marked or copied), others are still not considered. The
gray nodes are in the the “workset” which means that they are marked/copied,
but not all outgoing arcs have been handled yet.

A B
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D

E

Fig. 4. A snapshot

Figure 5 shows the next snapshot. Now all direct successors of A have been
treated. Therefore A is taken out of the workset, which we represent by the color
black. Note that we have the invariant property that all downward arrows start
in the workset. This corresponds to one of the two main invariants in the original
paper of Dijkstra et al. [3].
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Fig. 5. The next snapshot

Now let us assume that in this moment the Mutator intervenes by adding
an arc A → E and then deleting the arc D → E . This leads to the situation in
Figure 6. Since A is no longer in the workset, its connection to E will not be
detected. Hence, E is hidden from the Collector and therefore will be treated,
erroneously, as a dead garbage node.

There are three reasonable ways to cope with this problem (using suitable
write barriers):
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Fig. 6. A subtle error

– When performing addArc(A,E ), record E . (This is the approach of Dijkstra
et al. [3].)

– When performing addArc(A,E ), record A. (This is the approach taken by
Steele [20].)

– When performing delArc(D ,E ), record E . (This is the approach taken by
Yuasa [22].)

Note also that this bug may appear in an even subtler way during the handling
of a node in the workset. Consider the node C in Figure 5 and suppose that it
has lifted the first two of its three arcs. At this moment the Mutator redirects
the first pointer field to, say, E . But a naive Collector will nevertheless take node
C out of the workset (color it black) when its final arc has been treated.

2.1 Architecture and Basic Terminology

We modularize the problem by way of three kinds of components; see Figure 7.
The Mutators represent the activities of all programs that use the heap. These
activities base on primitive operations that are provided by the component Store,
which represents the memory management system (as part of the runtime system
or operating system). Finally the task of the garbage collection is performed by
a component Collector .

The Mutator operates on a graph, which is a data structure of type
Graph(Node,Arc). It can essentially perform three primitive operations:2

– addArc(a, b): add a new arc node a to node b.
– delArc(a, b): delete the arc between a and b. This may have the effect that

b and other nodes reachable from b become unreachable (“garbage”).
– addNew (a): allocate a new node b (from the freelist) and attach it by an arc

from a. This reflects the fact that in reality alloc operations return a pointer,
which is stored in some field (variable, register, heap cell) of the Mutator.
Hence, the new node is immediately linked to the Mutator’s graph.

2 This considerably simplifies the memory model used in the DLG algorithm [4,5],
where the Mutator has eight operations. However, the essence of these operations is
captured by our three operations.
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component Mutator

graph :Graph(Node ,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node,Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Mutator

graph :Graph(Node, Arc)
addArc: . . .
delArc: . . .
addNew : . . .

. . .

component Collector

graph : Graph(Node,Arc)
active :Set(Node)
supply :Set(Node)

. . .

component Store

graph : Graph(Node,Arc)
active :Graph(Node ,Arc)
nodes : Set(Node)
active :Set(Node)
supply :Set(Node)
live: Set(Node)
dead :Set(Node)

addArc: . . .
delArc: . . .
addNew : . . .

live = active � supply
nodes = live � dead

. . .

// the Mutator’s view
// universe of all nodes
// reachable by Mutator
// freelist
// active + supply
// garbage

Morphism: graph �→ active

Fig. 7. The system architecture

The Store provides the low-level interface to the actual memory-access opera-
tions. We distinguish the following sets:

– active are those nodes that constitute the Mutator’s graph.
– supply are the nodes in the freelist. (They become active through the oper-

ation addNew .)
– live is a shorthand for the union of the active and supply nodes.
– dead are the garbage nodes that are neither reachable from the Mutator nor

in the freelist. (Nodes may become dead through the operation delArc.)

Note that the specifications in Figure 7 use A = B � C as a shorthand nota-
tion for the two properties A = B ∪ C and B ∩ C = ∅. They also use overload-
ing of operation names. For example active is used both for the subgraph that
constitutes the Mutator’s view and for the set of nodes in this subgraph. Such
overloaded symbols must always be distinguishable from their context. Note also
that we frequently refer to the “set” Arcs of the arcs of a graph and also to the
“set” sucs(a) of all successors of a node a; but these are actually multisets, since
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two nodes may be connected by several arcs. Technically, the cell has several
slots that all point to the same cell.

The Mutator’s operations addArc, delArc, addNew have an invariant property
that is decisive for the working of any kind of garbage collector: being garbage is
a stable property [1].

Proposition 1 (Antitonicity of Mutator). A Mutator can only access the
nodes in its graph and the freelist; that is, it can never access garbage nodes. In
other words, the set of live nodes (graph + freelist) monotonically decreases.

2.2 The Fundamental Specification of Garbage Collection

Surprisingly often papers on garbage collection refer to an intuitive understand-
ing of what the Collector shall achieve. But in a formal treatment we cannot
rely on intuition; rather we have to be absolutely precise about the goal that we
want to achieve. Consider the architecture sketched in Figure 7. The Mutator
continuously performs its basic operations addArc, delArc and addNew , which –
from the Mutators viewpoint – are all considered to be total functions; i.e. they
return a defined value on all inputs. This is trivially so for addArc and delArc,
since their arguments exist in the mutators graph. The problematic operation is
addNew , since this operation needs an element from the freelist. However, the
freelist may be empty (i.e. supply = ∅). In this situation there are two possibili-
ties:

1. | active| = MemorySize . That is, the Mutator has used all available memory
in its graph. Then nothing can be done!

2. | active| < MemorySize . When supply = ∅, this means that dead �= ∅. This
is the situation in which we want to recycle garbage cells into the freelist.
And this is the Collector’s reason for existence!

Based on this reasoning, we obtain two basic principles for the Mutator/Collector
paradigm.

Assumption 1 (Boundedness of Mutator’s Graph). We presume the fol-
lowing global property: | Mutator .graph | < MemorySize

Under this global assumption the Collector has to ensure that the operation
addNew is a total function (which may at most be delayed). This can be cast
into a temporal-logic formula:

Goal 2 (Specification of Collector). �♦ supply �= ∅ (provided assump-
tion 1 holds)

This is a liveness property stating that “at any point in time the freelist (may
be empty but) will eventually be nonempty.” When this condition is violated,
that is, supply = ∅, then it follows by the global Assumption 1 that dead �= ∅.
Hence the Collector has to find at least some dead nodes, which it can then
transfer to the freelist. This can be cast into an operation recycle with the initial
specification given in Figure 8.
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spec Collector

recycle :Graph(Node ,Arc) → Set(Node)
∅ ⊂ recycle(G) ⊆ dead if dead �= ∅
∅ = recycle(G) if dead = ∅

Fig. 8. The Collector’s task

Hence we should design the system’s working such that the following property
holds (using an ad-hoc notation for transitions).

Goal 3 (Required Actions of Collector).�♦
(
supply−→supply� recycle(G)

)

When Goal 3 is met, then the original Goal 2 is also guaranteed to hold. In other
words, the collector has to periodically call recycle and add the found subset of
the garbage nodes to the freelist.

Note that the above operation can happen at any point in time; we need
not wait until the freelist is indeed empty. This observation leaves considerable
freedom for optimized implementations which are all correct.

2.3 How to Find Dead Nodes

Unfortunately, the specification of recycle in Figure 8 is not easily implementable
since the dead nodes are not directly recognizable. Since the dead nodes are the
complement of the live nodes; i.e. live = �dead = nodes\live, the idea comes to
mind to work with the complement of recycle. This leads to the simple calculation

∅ ⊂ recycle(G) ⊆ dead
⇔ � ∅ ⊃ � recycle(G) ⊇ �dead
⇔ nodes ⊃ � recycle(G) ⊇ live
⇔ nodes ⊃ trace(G) ⊇ live

where we introduce a new function trace(G) = � recycle(G). This leads to the
refined version of the Collector’s specification in Figure 9. Note that this speci-
fication, which will form the starting point for our more detailed derivation, is
formally derived from the fundamental requirements for garbage collection as
expressed in Assumption 1 and Goal 2 above!

3 Mathematical Foundation: Fixed Points

In garbage collection one can roughly distinguish two classes of collectors:

– Stop-the-world collectors : these are the classical non-concurrent collectors,
where the mutators need to be stopped while the collector works.

– Concurrent collectors: these are the collectors that allow the mutators to
keep working concurrently with the collector (except for very short pauses).
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spec Collector

recycle :Graph(Node ,Arc) → Set(Node)
trace :Graph(Node,Arc) → Set(Node)

recycle(G) = � trace(G)
live ⊆ trace(G) ⊂ nodes if dead �= ∅
trace(G) = nodes if dead = ∅

Fig. 9. The Collector’s task (first refinement)

3.1 Classical Fixed Points (Stop-the-World Collectors)

Computing the set of garbage nodes in a stop-the-world collector can be treated
as a classical fixpoint computation in a finite powerset lattice. We briefly review
the basic concepts and then show how to calculate the overall structure of a
marking algorithm.

– For a set s = { x0, x1, x2, . . .} of type Set(A) and a function f :A → A we use
the overloaded function f :Set(A) → Set(A) by writing f (s) as a shorthand
for {f (x0), f (x1), f (x2), . . .}.

– A function f :A → A is monotone, if x ≤ y ⇒ f (x ) ≤ f (y) holds.
– The function f is continuous, if f (�{x0, x1, x2, . . .})=�{f (x0),f (x1),f (x2),. . .}

holds.
– The function f is inflationary in x , if x ≤ f (x ) holds.
– The element x is called a fixed point of f , if x = f (x ) holds; x is the least

fixed point, if x ≤ y for any other fixed point y of f .
– The element x is called a fixed point of f relative to r , if x = f (x ) ∧ r ≤ x

holds.
– By f̂(x ) = least u . u = f (u) ∧ x ≤ u we denote the reflexive-transitive clo-

sure of f (when it exists); i.e. the function that yields the least fixed point
of f relative to x .

Lemma 4 (Properties of the Closure f̂ ). The closure f̂(x ) has a number
of properties that we will utilize frequently:

– x ≤ f̂(x ) (inflationary);
– f̂(f̂(x )) = f̂(x ) (idempotent);
– f (f̂(x )) = f̂(x ) (fixpoint);
– f̂(f (x )) = f̂(x ) if x ≤ f (x )

Theorem 1 (Kleene[8]). For a continuous function f the least fixed point x
is obtained as the least upper bound of the Kleene chain:

x = �{⊥, f (⊥), f 2(⊥), f 3(⊥), . . . }
where ⊥ is the bottom element of the lattice.
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It has been shown that the essence of these theorems also holds in the simpler
structure of complete partial orders (cpos)3. Cai and Paige [2] present a number of
generalizations of Theorem 1 that are streamlined towards practical algorithmic
implementations of fixpoint computations.

Theorem 2 (Cai-Paige). Let A be a cpo and f :A → A be a monotone function
that is inflationary in r. Let {s0, s1, s2, . . . , sn} be an arbitrary sequence obeying
the conditions

r = s0
si < si+1 ≤ f (si) for i < n

sn = f (sn)

then sn is the least fixed point of f relative to r. Conversely, when the least fixed
point is finitely computable, then the sequence will lead to such an sn .

Theorem 2 provides a natural abstraction from workset-based iterative algo-
rithms, which maintain a workset of change items. At each iteration, a change
item is selected and used to generate the next element of the iteration sequence.
The incremental changes tend to be small and localized, hence this is called the
micro-step approach, and the Kleene chain the macro-step approach [14]. All
practical collectors use a workset that records nodes that await marking.

Corollary 1 (Invariance of Closure). The elements of the set of approxima-
tions { s0 < s1 < s2 < . . . < sn } all have the same closure: f̂(si) = f̂(r).

Using these basic results, we derive the overall structure of a marking algorithm
for a stop-the-world collector. The essence of it is the iterative algorithm for
finding garbage nodes to recycle.

Letting roots denote the roots of the active graph together with the head of
the supply list, we have live = f̂(roots) where f(R) = {b | b ∈ G.sucs(a) & a ∈
R}; in words, the active nodes are the closure of the roots under the successor
function in the current graph G.

To derive an algorithm for computing the dead nodes, we calculate as follows:

dead
= � live definition

= � f̂(roots) definition

= ǧ(roots) using the law � ĥ(R) = ǐ(R) where i(x) = �h(� x)

where ǧ(R) is the greatest fixpoint of the monotone function

g(x) = nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \ x}).
This allows us to produce a correct, but naive iterative algorithm to compute
dead nodes via a Kleene chain.
3 A cpo is a partial order in which every directed subset has a supremum.
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Program 1. Raw Fixpoint Iteration Algorithm
W ← h.nodes; 1
while W �= g(W ) do W ← g(W ) 2
return W 3

Following Cai and Paige [2], we can construct a more efficient fixpoint iteration
algorithm using a workset defined by

WS = X \ g(X).

Although thisworkset definition is createdby instantiating a problem-independent
scheme, it has an intuitive meaning: the workset is the set of nodes whose parents
have been “marked” as live, but who themselves have not yet been marked. The
workset expression can be simplified as follows

X \ g(X)

= { Definition }

X \ (nodes \ (roots ∪ {b | b ∈ sucs(a) & a ∈ nodes \ X}))

= { Using the law A \ (B ∪ C) = (A \B) \ C }

X \ ((nodes \ roots) \ {b | b ∈ sucs(a) & a ∈ nodes \ X})

= { Using the law A \ (B \ C) = (A \ B)
⋃

(A ∩ C) }

(X \ (nodes \ roots))
⋃

({b | b ∈ sucs(a) & a ∈ nodes \ X} ∩ X)

= { Using the law {x|P (x)} ∩Q = {x|P (x) ∧ x ∈ Q} }

(X \ (nodes \ roots))
⋃ {b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \ X}

= { Again using the law A \ (B \ C) = (A \B)
⋃

(A ∩ C) (on first term) }

(X \ nodes)∪(X ∩ roots)
⋃ {b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \ X}

= { Simplifying }

{} ∪ (X ∩ roots)
⋃ {b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \ X}

= { Simplifying}

(X ∩ roots)
⋃ {b | b ∈ sucs(a) & b ∈ X & a ∈ nodes \ X}.
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The greatest fixpoint expression can be computed by the workset-based Program
2 justified by Theorem 2.

Program 2. Workset-based Fixpoint Iteration Program
W ← nodes; 1
while ∃z ∈ ((W ∩ roots)

⋃ {b | b ∈ sucs(a) & b ∈W & a ∈ nodes \W}}) 2
W ←W − z 3

return W 4

To improve the performance of this algorithm, we apply the Finite Differencing
transformation [11] and incrementally maintain the invariant

WS = (W ∩ roots)
⋃

{b | b ∈ sucs(a) & b ∈ W & a ∈ nodes \ W}.

The calculations to enforce the invariant (detailed in [13]) result in the code is
shown in Program 3, where concurrent assignment is used to update both W
and the workset WS.

Program 3. Optimized Fixpoint Iteration Algorithm
invariant WS = (W ∩ roots)

⋃ {b | b ∈ sucs(a) & b ∈W & a ∈ nodes \W} 1
W,WS := nodes, roots; 2
while ∃z ∈ WS do 3

W,WS := W − z, WS
⋃ {b | b ∈ sucs(z) & b ∈W})− z 4

output W. 5

Program 3 represents the abstract structure of most marking algorithms.
Our point is that its derivation, and further steps toward implementation, are
carried out by generic, problem-independent transformations, supported by
domain-specific simplifications, as above. Further progress toward a detailed im-
plementation requires a variety of other transformations, including finite differ-
encing, simplification, and datatype refinements. For example, the finite set W
may be implemented by a characteristic function, which in turn is refined to a
bit array, or concurrent data structures for local buffers or work-stealing queues.

3.2 Fixed Points in Dynamic Settings (Concurrent Collectors)

The classical fixed-point considerations work with a fixed monotone function f .
In the garbage collection application this is justified as long as the graph, on
which the collector works, remains fixed during the collector’s activities. But as
soon as the mutator is working in parallel with the collector, the graph keeps
changing, while the collector is active. This can be modeled by considering a
sequence of graphs G0, G1, G2, . . . and by making the function f dependent
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on these graphs: f (G0)(. . .), f (G1)(. . .), f (G2)(. . .), . . . , where the function f is
f :Graph → Set(Node) → Set(Node) and

f(G)(S) = S
⋃

{b | a ∈ S & b ∈ G.sucs(a)}.

Intuitively, f extends a given set of nodes with the set of their successors in the
graph. To ease readability we omit the explicit reference to the graphs and simply
write f0, f1, f2, . . . . Using this notational liberty the specification of the under-
lying foundation is stated in Figure 10: the fi are monotone 1 and inflationary
in r 2 . Moreover the closure-forming operator f̂ is defined by 3 .

spec Foundation

extend Cpo(A)
f0, f1, f2, . . . :A → A
̂ :A → A → A → A
r :A
x ≤ y ⇒ fi(x ) ≤ fi(y) 1

r ≤ fi(r) 2

f̂(x ) = least s : x ≤ s ∧ s = f (s) 3

// A is a cpo (alternatively: lattice)
// sequence of functions

// f̂ is reflexive-transitive closure of f
// “root”

// all fi are monotone
// all fi are inflationary in r

// closure (computes least fixed point)

Fig. 10. Initial Specification

Based on this foundation we can now formulate our goal. Recall the specifi-
cation of the garbage collection task given by Collector in Figure 9 by the two
inclusions live ⊆ trace(G) ⊂ nodes . This translates into our dynamic setting as
liven ⊆ s ⊂ nodes . We add as a working hypothesis that the set live0 serves
as an upper bound that we will need to guarantee in our dynamic algorithm:
liven ⊆ s ⊆ live0 ⊂ nodes . The set live0 is sometimes called the “snapshot-at-
the-beginning” [1]. Since in our abstract setting liven corresponds to the closure
f̂n(r) and live0 corresponds to the closure f̂0(r), we immediately obtain the
abstract formulation 5 of our problem statement (Figure 11).

Axiom 4 is the abstract counterpart of the fundamental Proposition 1: the
set of live nodes is monotonically decreasing over time, or, dually, garbage in-
creases monotonically. For proof-technical reasons we have to conditionalize this
property to any set x containing the roots r .)

Note that the existential formula 5 is trivially provable by setting n = 0 and
s = f̂0(r). Actually the property 6 (see Lemma 5 below) shows that such an s
exists for any n. However, our actual task will be to come up with a constructive
algorithm that yields such an n and s.

For the specification FixpointProblem we can prove the property 6 (i.e.
Lemma 5) that will be needed later on. This monotonic decreasing of the closure
is in accordance with our intuitive perception of the Mutator’s activities. The



Formal Derivation of Concurrent Garbage Collectors 367

spec Fixpoint-Problem

extend Foundation

r ≤ x ⇒ fi+1(f̂i(x )) ≤ f̂i(x ) 4

thm ∃n, s : f̂n(r) ≤ s ≤ f̂0(r) 5

thm r ≤ x ⇒ f̂0(x ) ≥ f̂1(x ) ≥ f̂2(x ) ≥ . . . 6

// garbage can only grow

// liven ≤ s ≤ live0

// Lemma 5

Fig. 11. Fixpoint Specification

operation delArc may lead to fewer live nodes. And the operations addArc and
addNew do not change the set of live nodes (since the freelist is part of the live
nodes).

Lemma 5 (Antitonicity of Closure). The closures are monotonically
decreasing:

For r ≤ x we have f̂0(x ) ≥ f̂1(x ) ≥ f̂2(x ) ≥ . . . 6

Proof : We use a more general formulation of this lemma: For monotone g and
h we have the property

∀x : g(ĥ(x )) ≤ ĥ(x ) ⇒ ĝ(x ) ≤ ĥ(x )

We show by induction that ∀i : g i (x ) ≤ ĥ(x ). Initially we have g0(x ) = x ≤ ĥ(x )
due to the general reflexivity property 3 of the closure.The induction stepuses the
induction hypothesis and then the premise: g i+1(x ) = g(g i (x )) ≤ g(ĥ(x )) ≤ ĥ(x ).
By instantiating fi+1 for g and fi for h we immediately obtain f̂i+1(x ) ≤ f̂i(x ) by
using the axiom 4 , when r ≤ x . (End of proof)

3.3 The Microstep Refinement

In order to get closer to constructive solutions we perform our first essential
refinement. Generalizing the idea of Cai and Paige in Theorem 2, we add further
properties to our specification, resulting in the new specification of Figure 12.
Note that we now use some member sn of the sequence s0, s1, s2, . . . as a witness
for the existentially quantified s .

Proof of property 9 : In a finite lattice the si cannot grow forever. Therefore
there must be a fixpoint sn = fn(sn) due to axiom 8 . Then the left half of the
proof of 9 follows trivially from monotonicity:

∀i : r ≤ si
� r ≤ sn = fn(sn)
� f̂n(r) ≤ f̂n(fn(sn)) = f̂n(sn) = sn

// axiom 7 and 8

// sn is fixpoint
// properties of f̂n Lemma 4

The right half sn ≤ f̂0(r) is a direct consequence of the following Lemma 6. (End
of proof)
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spec Micro-Step

extend FixpointProblem
s0, s1, s2, . . . :A
s0 = r 7

si < si+1 ≤ fi(si) ∨ si = fi(si) 8

thm ∃n: f̂n(r) ≤ sn ≤ f̂0(r) 9

thm f̂0(s0) ≥ f̂1(s1) ≥ . . . ≥ f̂n(sn) 10

// sequence of approximations

// start with “root”
// computation step

// to be shown below

// Lemma 6 below

Fig. 12. The “micro-step approach”

Lemma 6 (Decreasing Closures). As a variation of Lemma 5 we can show
property 10 : the closures are decreasing, even when applied to the increasing si :

∀i : f̂i+1(si+1) ≤ f̂i(si)

Proof : On the basis of Lemma 5 (property 6 in Figure 11) the proof follows
directly from axiom 8 by monotonicity:

si+1 ≤ fi (si)
� f̂i+1(si+1) ≤ f̂i+1(fi (si)) ≤ f̂i(fi (si)) = f̂i(si)

// axiom 8

// monot. of f̂i+1; 6

Note that 6 is applicable here, since – due to 8 – r ≤ fi(si) holds. (End of
proof)

Lemma 6 may be depicted as follows:

s0
s1

s2
f̂2(s2) f̂1(s1) f̂0(s0)

where the approximations s0, s1, s2, . . . keep growing, while their closures
f̂0(s0), f̂1(s1), f̂2(s2), . . . keep shrinking.

This essentially concludes the derivation that can reasonably be done on the
abstract mathematical level of fixed points and lattices.

4 Garbage Collection in Dynamic Graphs

We now take specific properties of garbage collection into account, but still on
the semi-abstract level of sets and graphs. First we note that our specification of



Formal Derivation of Concurrent Garbage Collectors 369

garbage collection using sets and set inclusion is a trivial instance of the lattice-
oriented specification in the previous section. Therefore all results carry over to
the concrete problem. The morphism is essentially defined by the following map:

Φ =
[A �→ Set(Node)
≤ �→ ⊆
fi(s) �→ f (Gi )(s) = s ∪ Gi .sucs(s) = s ∪ ⋃

a∈s Gi .sucs(a)
r �→ G0 .roots

]

– The basis now is a sequence of graphs G0, G1, G2, . . . which are due to the
activities of the Mutator.

– The function f (Gi)(s) = s ∪ ⋃
a∈s Gi .sucs(a) adds to the set s all its direct

successors. (We will retain the shorthand notation fi = f (Gi) in the following).

spec Foundation spec Reachability

spec FixpointProblem spec Workset

spec MicroStep spec Dirtyset

Φ4

Φ5

Φ1

Φ2

Φ3

Fig. 13. Roadmap of refinements

Figure 13 illustrates the road map through our essential refinements. The left
half shows the refinements that have been performed in the previous Section 3
on the abstract mathematical level of lattices and fixed points. The right half
shows the refinements on the semi-abstract level of graphs and sets that will be
presented in this section.

Lemma 7 (Morphism Abstract → Concrete). Under the morphism Φ, all
axioms of the abstract specifications Foundation, FixpointProblem and MicroStep
hold for the more concrete specifications of graphs and sets (see Figure 13).

Proof : We show the three morphism properties Φ1, Φ2, Φ3 in turn.
Φ1: The proof is trivial, since the monotonicity axiom 1 is a direct conse-

quence of the definition of Φ(fi ). Axiom 3 is just a definition.
Φ2: To foster intuition, we first consider the special case x = r : the morphism

translates:

4
Φ�→ fi+1

(
f̂i(r)

) ⊆ f̂i(r)
⇔(
live i ∪

⋃
a∈livei

Gi+1 .sucs(a)
) ⊆ live i

⇔
∀a ∈ live i :Gi+1 .sucs(a) ⊆ live i

// f̂i(r) = livei, def. of Φ(fi)

// (A1 ∪ ... ∪ An) ⊆ B ⇔ ∀i : Ai ⊆ B
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In order to prove this last property, i.e. ∀a ∈ live i :Gi+1 .sucs(a) ⊆ live i , we must
consider all nodes a ∈ live i and all (sequences of) actions that the Mutator can
use to effect the transition Gi � Gi+1. We distinguish the two possibilities for
a ∈ live i :

(1) a ∈ Gi .freelist : Then there are two subcases (which base on the reasonable
constraint that nodes in the freelist and newly created nodes do not have “wild”
outgoing pointers):

(1a) a ∈ Gi+1 .freelist ,
then Gi+1 .sucs(a) ⊆ Gi+1 .freelist ⊆ Gi .freelist ⊆ live i

(1b) a ∈ Gi+1 .active (caused by addNew ),
then Gi+1 .sucs(a) = ∅ ; now (2) applies

(2) a ∈ Gi .active : Then there are three subcases for b ∈ Gi+1 .sucs(a):

(2a) (a → b) ∈ Gi .arcs � b ∈ Gi .active ⊆ live i

(2b) (a → b) created by addArc(a, b) � b ∈ Gi .active ⊆ live i

(2c) (a → b) created by addNew (a) � b ∈ Gi .freelist ⊆ live i

If we start this line of reasoning not from the roots r but from a superset x ⊇ r ,
then we need to consider supersets l̂i ⊇ live i (where the hat shall indicate that
these sets are closed under reachability) and prove ∀a ∈ l̂i :Gi+1 .sucs(a) ⊆ l̂i .
Evidently the reasoning in (1) and (2) applies here as well. But now there is a
third case:

(3) a ∈ Gi .dead . In this case there is no operation of the Mutator that could
change the successors of a (since all operations require a ∈ active). Hence
Gi+1 .sucs(a) = Gi .sucs(a). Due to the closure property we have the implication
a ∈ l̂i ⇒ Gi .sucs(a) ⊆ l̂i . The above equality then entails also Gi+1 .sucs(a)⊆ l̂i .

Φ3: The morphism Φ translates the axioms 7 and 8 into
si ⊆ si ∪

⋃
a∈si

Gi .sucs(a)
This is trivially fulfilled such that the constraint on the choice of si+1 is well-

defined. (End of proof)
When considering the last specification Micro-Step in Figure 12 then we have

basically shown that any sequence s0, s1, s2, . . . that fulfills the constraints 7

and 8 solves our task. But we have not yet given a constructive algorithm
for building such a sequence. In the next refinement steps Φ4 and Φ5 we will
proceed further towards such a constructive implementation (actually to a whole
collection of implementation variants) by adding more and more constraints to
our specification. Each of these refinements constitutes a design decision that
narrows down the set of remaining implementations.

4.1 Worksets (“Wavefront”)

As a first step towards more constructive descriptions we return to the standard
idea of worksets (sometimes referred to as “wavefront”), which has already been
illustrated Program 2, and in the examples in Section 2. This refinement is given
in Figure 14.
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spec Workset

extend MicroStep
b0, b1, b2, . . . :A
w0, w1, w2, . . . :A
si = (bi 	 wi)
f̂i(si) = bi ∪ f̂i(wi) 12

thm wn = ∅ ⇒ f̂n(sn) = bn 13

// completely treated (“black”)
// partially treated (“workset” or “gray”)

// partitioning into black and gray

// additional constraint

// termination condition

Fig. 14. The workset approach

The partitioning si = (bi � wi) arises naturally from the definition of the work-
set, as in Program 2. But the additional axiom 12 is a major constraint! It
essentially states that the closure f̂i(si) of the current approximation si shall
be primarily dependent on the closure of the workset wi . This reduces the de-
sign space of the remaining implementations considerably – but from a practical
viewpoint this is no problem, since we only exclude inefficient solutions. The
theorem 13 stated in the specification provides a termination condition for the
later implementations that is far more efficient than our original termination
criterion fn (sn) = sn .

An important observation: It is easily seen that the subtle error situation
illustrated in Figure 6 in Section 2 violates the axiom 12 . Therefore any further
refinement of the specification Workset cannot exhibit this error. In other words:
if we derive an implementation by refinement from the specification Workset in
Figure 14, then we are certain that the bug cannot occur!

A major problem: Unfortunately, just introducing sufficient constraints for
excluding error situations is not enough. Consider the situation of Figure 6 in
Section 2. We have to ensure that the Mutator cannot perform the two opera-
tions addArc(A,E ) and delArc(D ,E ) without somehow keeping the axiom 12

intact. This necessitates for the first time that the Mutator cooperates with
the Collector, thus introducing constraints for the Mutator. Even though these
constraints may be hidden in the component Store, they do have an implicit
influence on the Mutator’s working.

As has already been pointed out in Section 2, there are three principal possi-
bilities to resolve this problem:

– One can stop the Mutator until the Collector has finished (Section 3.1).
– One can put A or E into the workset, when addArc(A,E ) is executed.
– One can put E into the workset, when delArc(D ,E ) is executed.

Each of these solutions keeps the axiom 12 intact, but they have problems. Stop-
ping the Mutator is unacceptable, since this destroys the very idea of having Muta-
tor and Collector work concurrently. In both of the other cases the Mutator adds
elements to the workset, while the Collector is taking them out of the workset.
Naive implementations of this specification would not guarantee termination.
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In the following we will present several refinements for solving this problem.
These refinements are the high-level formal counterparts of solutions that can
be found in the literature and in realistic production systems for the JVM and
.Net.

4.2 Dirty Nodes

One can alleviate the stop times for the Mutator by splitting the workset into
two sets, one being the original workset of the Collector, the other assembling
the critical nodes from the Mutator. This is shown in Figure 15. The new axiom
14 is similar to 12 using the partitioning wi = (gi � di).

spec Dirtyset

extend Workset
g0, g1, g2, . . . :A
d0, d1, d2, . . . :A
si = (bi 	 gi 	 di)
f̂i(si) = bi ∪ f̂i(gi) ∪ f̂i(di) 14

thm gn = ∅ ⇒ f̂n(sn) = bn ∪ f̂n(dn ) 15

// treated by Collector (“gray”)
// introd. by Mutator (“dirty”)

// partition black, gray and dirty

// closure condition

// intermed. termination cond.

Fig. 15. Introducing “dirty” nodes

This specification can be implemented by a Collector that successively treats
the gray nodes in gi until this set becomes empty (which can be guaranteed).
But – by contrast to the earlier algorithms – this does not yet mean that all live
nodes have been found. As the theorem 15 shows we still have to compute f̂i(di).
But this additional calculation tends to be short in practice, and the Mutator
can be stopped during its execution. Consequently, correctness has been retained
and termination has been ensured.

The Mutator now adds “critical” nodes to the “dirty” set di . In order to keep
the set di as small as possible one does not add all potentially critical nodes to
it: as follows from axiom 14 , black or gray nodes need not be put into di . And
since di is a set, nodes need not be put into it repeatedly. Actually, when the
Mutator executes addArc(a, b) with a /∈ si (“a is still before the wavefront”),
then axiom 14 would allows us the choice of putting a into di or not (similarly
for b. Commonly, a is simply added to di .

4.3 Implementing the Step si �→ si+1

So far all our specifications only impose the constraint 8 (see MicroStep in
Figure 12) on their implementations, that is:

si < si+1 ≤ fi(si) ∨ si = fi(si)
The actual computation of the step si �→ si+1 has to be implemented by some
function step. For this function we can have different degrees of granularity:
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– In a coarse-grained implementation we pick some node x from the gray
workset and add all its non-black successors to the workset. Then we color
x black.
This variant is simpler to implement and verify, but it entails a long atomic
operation. The corresponding write barrier slows down the standard working
of the Mutators.

– In a fine-grained implementation we treat the individual pointer fields within
the current (gray) node x one-by-one. In our abstract setting this means that
we work with the individual arcs.
This makes the write barrier shorter and thus increases concurrency, but the
implementation and its correctness proof become more intricate.

Onour abstract levelwe treat this design choice byway of twodifferent refinements.
This is depicted in Figure 16 (where the shorthand notation . . .using x with p(x )
entails that the property only has to hold when such an x exists).

A note of caution. If we apply the morphism Φ introduced at the beginning
of Section 4 directly, the strict inclusion si < si+1 of axiom 8 would not be
provable. Therefore we must interpret

(b, g) < (b′, g ′) Φ�→ b ⊂ b′ ∨ (b = b′ ∧ g ⊂ g ′).
But there are still further implementation decisions to be made. Both CoarseStep
and FineStep specify (at least partly) how the step operation deals with the
selected gray node. But this still leaves one important design decision open:
How are the gray nodes selected? In the literature we find several approaches to
this task:

1. Iterated scanning. One may proceed as in the original paper by Dijkstra et
al. [3] and repeatedly scan the heap, while applying step to all gray nodes

spec DirtySet

spec CoarseStep

step: Set(Node) × Set(Node)
→ Set(Node) × Set(Node)

step(b, g) =
(b ⊕ x ,

(g ∪ sucs(x )) \ (b ⊕ x ))
using x with
x ∈ g \ b

spec FineStep

step: Set(Node) × Set(Node)
→ Set(Node) × Set(Node)

step(b, g) =
(b, g ⊕ y)
using x , y with
x ∈ g ∧ (x → y) ∈ Arcs ∧ y /∈ (b ∪ g)

step(b, g) =
(b ⊕ x , g � x )
using x with
x ∈ g ∧ sucs(x ) ∩ (b ∪ g) = ∅

Φ1 Φ2

Fig. 16. Step functions of different granularities
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that are encountered. This has the advantage of not needing any additional
space, but it may lead to many scans over the whole heap, in the worst case
O(N 2) times, and is not considered practical.

2. Alternatively one performs the classical recursive graph traversal, which may
equivalently be realized by an iteration with a workset managed as a stack.
This allows all the well-known variations, ranging from a stack for depth-first
traversal to a queue for breadth-first traversal. In any case the time cost is
in the order O(|live |), since only the live nodes need to be scanned. However,
there also is a worst-case need for O(|live |) space – and space is a scarce
resource in the context of garbage collection.

3. One may compromise between the two extremes and approximate the work-
set by a data structure of bounded size (called a cache in [4,5]). When this
cache overflows one has to sacrifice further scan rounds.

4. When there are multiple mutators, for efficiency it is necessary to have local
worksets working concurrently.

These design choices are illustrated in Figure 17, but we refrain from coding all
the technical details.

spec DirtySet

spec IteratedScan spec Recursion spec BoundedCache spec LocalWorkSets

Ψ1 Ψ2 Ψ3 Ψ4

Fig. 17. Design choices for finding the gray nodes

It should be emphasized that the refinements Ψ1, Ψ2, Ψ3, Ψ4 of Figure 17 are
independent of the refinements Φ1, Φ2 of Figure 16. This means that we can
combine them in any way we like. The combination of some Φi with some Ψj is
formally achieved by a pushout construction as already mentioned in Section 1.
In a system like Specware [7] such pushouts are performed automatically.

Further refinements to handle generational garbage collectors, dirty cards, dirty
pages and related techniques for scanning the dirty nodes are sketched in [13].

5 Conclusion

It is well known that realistic garbage collectors exhibit a huge amount of tech-
nical details that are ultimately responsible for the size and complexity of the
verification efforts. The pertinent issues cover a wide range of questions such as:

– What are the exact read and write barriers?
– How do we treat the references in the global variables, the stacks and the

registers?



Formal Derivation of Concurrent Garbage Collectors 375

– Where do we put the marker bits (in mark-and-sweep collectors) or the
forward pointers (in copying collectors)?

Due to space limitations we have omitted discussion of these and other topics,
which may however be found in the extended version of this paper [13], partic-
ularly the issue of computing the dynamically changing set of roots.

We have shown how the main design concepts in contemporary concurrent
collectors can be derived from a common formal specification. The algorithmic
basis of the concurrent collectors required the development of some novel gener-
alizations of classical fixpoint iteration theory. We hope to find a wide variety of
applications for the generalized theory, as there has been for the classical theory.
This is of interest since the reuse of abstract design knowledge across applica-
tion domains is a key factor in the economics of formal derivation technology.
Alternative refinements from the basic algorithm lead to a family tree of concur-
rent collectors, with shared ancestors corresponding to shared design knowledge.
While our presentation style has been pedagogical, the next step is to develop
the derivation tree in a formal derivation system, such as Specware.
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