239 research outputs found

    Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at √s = 7 TeV

    Get PDF
    The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta p_T = 35-150 GeV/c in proton-proton collisions at √s=7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2 < |η| < 4.7, and central jets within the |η| < 2.8 range. The differential cross sections d^2σ/dp_T dη are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events

    The next frontier of the anaerobic digestion microbiome : from ecology to process control

    Get PDF
    The anaerobic digestion process has been one of the key processes for renewable energy recovery from organic waste streams for over a century. The anaerobic digestion microbiome is, through the continuous development of novel techniques, evolving from a black box to a well-defined consortium, but we are not there yet. In this perspective, I provide my view on the current status and challenges of the anaerobic digestion microbiome, as well as the opportunities and solutions to exploit it. I consider identification and fingerprinting of the anaerobic digestion microbiome as complementary tools to monitor the anaerobic digestion microbiome. However, data availability, method-inherent biases and correct taxa identification hamper the accuracy and reproducibility of anaerobic digestion microbiome characterization. Standardisation of microbiome research in anaerobic digestion and other engineered systems will be essential in the coming decades, for which I proposed some targeted solutions. These will bring anaerobic digestion from a single-purpose energy-recovery technology to a versatile process for integrated resource recovery. It is my opinion that the exploitation of the microbiome will be a driver of innovation, and that it has a key role to play in the bio-based economy of the decades to come. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences

    Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    A study of dijet production in proton–proton collisions was performed at √s = 7 TeV for jets with pT > 35 GeV and |y| < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as “inclusive”. Events with exactly one pair of jets are called “exclusive”. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets |y| is measured for the first time up to |y| = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus |y| than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at √s = 7 TeV

    Get PDF
    The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pT = 35–150 GeV/c in proton-proton collisions at √ s = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2 < |η| < 4.7, and central jets within the |η| < 2.8 range. The differential cross sections d2σ/dpT dη are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) pythia and herwig parton-shower event generators with different tunes of parameters, and (iii) cascade and hej models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.We wish to express our gratitude to Jeppe Andersen and Jenni Smillie for fruitful discussions on the comparisons of the measurements with the hej model predictions, and to Gavin Salam for useful exchanges on the theoretical calculations. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Energie Átomique et aux Energies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundaçao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

    Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at s=7\sqrt{s}=7 TeV

    Get PDF
    A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.Peer Reviewe

    A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay

    Get PDF
    4E-transporter (4E-T) is one of several proteins that bind the mRNA 5′cap-binding protein, eukaryotic initiation factor 4E (eIF4E), through a conserved binding motif. We previously showed that 4E-T is a nucleocytoplasmic shuttling protein, which mediates the import of eIF4E into the nucleus. At steady state, 4E-T is predominantly cytoplasmic and is concentrated in bodies that conspicuously resemble the recently described processing bodies (P-bodies), which are believed to be sites of mRNA decay. In this paper, we demonstrate that 4E-T colocalizes with mRNA decapping factors in bona fide P-bodies. Moreover, 4E-T controls mRNA half-life, because its depletion from cells using short interfering RNA increases mRNA stability. The 4E-T binding partner, eIF4E, also is localized in P-bodies. 4E-T interaction with eIF4E represses translation, which is believed to be a prerequisite for targeting of mRNAs to P-bodies. Collectively, these data suggest that 4E-T interaction with eIF4E is a priming event in inducing messenger ribonucleoprotein rearrangement and transition from translation to decay

    Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton–proton collisions at s√=7 TeV

    Get PDF
    A study of dijet production in proton–proton collisions was performed at s√=7~TeV for jets with p_T>35 GeV and |y|<4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as “inclusive”. Events with exactly one pair of jets are called “exclusive”. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets |Δy| is measured for the first time up to |Δy|=9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus |Δy| than observed in the data. The BFKL-motivated generators cascade and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed

    Characterization of cellulolytic activity in the gut of the terrestrial land slug Arion ater : Biochemical identification of targets for intensive study

    Get PDF
    The level of cellulolytic activity in different areas of the gut of the terrestrial slug Arion ater was assayed at different temperatures and pH values. To do this, crude gut proteins were isolated and assayed using modified dinitrosalicylic acid reducing sugar assay. Crude protein samples were also separated and cellulolytic activity identified using in gel CMC zymography and esculin hydrate activity gel assays. pH and temperature profiling revealed optimum cellulolytic activity between pH5.0 and 6.0 for different gut regions and retention of up to 90% of activity at temperatures up to 50°C. Zymograms and activity gels revealed multiple endoglucanase and β-glucosidase enzymes. To further investigate the source of this cellulolytic activity bacterial isolates from the gut were tested for endoglucanase and β-glucosidase activity using growth plate assays. 12 cellulolytic microbes were identified using 16S rDNA gene sequencing. These include members of the genera Buttiauxella, Enterobacter, Citrobacter, Serratia and Klebsiella. Gut metagenomic DNA was then subjected to PCR, targeting a 400bp region of the 16SrDNA gene which was subsequently separated and individuals identified using DGGE. This identified members of the genera Citrobacter, Serratia, Pectobacterium, Acinetobacter, Mycoplasma, Pantoea and Erwinia. In summary, multiple glycoside hydrolase enzymes active over a broad range of temperature and pH values in a relatively under studied organism were detected, indicating that the gut of A. ater is a viable target for intensive study to identify novel carbohydrate active enzymes that may be used in the biofuel industry

    Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation

    Get PDF
    The DEAD-box RNA helicase Xp54 is an integral component of the messenger ribonucleoprotein (mRNP) particles of Xenopus oocytes. In oocytes, several abundant proteins bind pre-mRNA transcripts to modulate nuclear export, RNA stability and translational fate. Of these, Xp54, the mRNA-masking protein FRGY2 and its activating protein kinase CK2α, bind to nascent transcripts on chromosome loops, whereas an Xp54-associated factor, RapA/B, binds to the mRNP complex in the cytoplasm. Over-expression, mutation and knockdown experiments indicate that Xp54 functions to change the conformation of mRNP complexes, displacing one subset of proteins to accommodate another. The sequence of Xp54 is highly conserved in a wide spectrum of organisms. Like Xp54, Drosophila Me31B and Caenorhabditis CGH-1 are required for proper meiotic development, apparently by regulating the translational activation of stored mRNPs and also for sorting certain mRNPs into germplasm-containing structures. Studies on yeast Dhh1 and mammalian rck/p54 have revealed a key role for these helicases in mRNA degradation and in earlier remodelling of mRNP for entry into translation, storage or decay pathways. The versatility of Xp54 and related helicases in modulating the metabolism of mRNAs at all stages of their lifetimes marks them out as key regulators of post-transcriptional gene expression
    corecore