1,389 research outputs found

    Absolute dimensions of detached eclipsing binaries. III. The metallic-lined system YZ Cassiopeiae

    Full text link
    The bright binary system YZ Cassiopeiae is a remarkable laboratory for studying the Am phenomenon. It consists of a metallic-lined A2 star and an F2 dwarf on a circular orbit, which undergo total and annular eclipses. We present an analysis of 15 published light curves and 42 new high-quality echelle spectra, resulting in measurements of the masses, radii, effective temperatures and photospheric chemical abundances of the two stars. The masses and radii are measured to 0.5% precision: M_A = 2.263 +/- 0.012 Msun, M_B = 1.325 +/- 0.007 Msun, R_A = 2.525 +/- 0.011 Rsun and R_B = 1.331 +/- 0.006 Rsun. We determine the abundance of 20 elements for the primary star, of which all except scandium are super-solar by up to 1 dex. The temperature of this star (9520 +/- 120 K) makes it one of the hottest Am stars. We also measure the abundances of 25 elements for its companion (Teff = 6880 +/- 240 K), finding all to be solar or slightly above solar. The photospheric abundances of the secondary star should be representative of the bulk composition of both stars. Theoretical stellar evolutionary models are unable to match these properties: the masses, radii and temperatures imply a half-solar chemical composition (Z = 0.009 +/- 0.003) and an age of 490-550 Myr. YZ Cas therefore presents a challenge to stellar evolutionary theory.Comment: Accepted for publication in MNRAS. 15 pages, 9 tables, 7 figure

    Stability of 1-D Excitons in Carbon Nanotubes under High Laser Excitations

    Full text link
    Through ultrafast pump-probe spectroscopy with intense pump pulses and a wide continuum probe, we show that interband exciton peaks in single-walled carbon nanotubes (SWNTs) are extremely stable under high laser excitations. Estimates of the initial densities of excitons from the excitation conditions, combined with recent theoretical calculations of exciton Bohr radii for SWNTs, suggest that their positions do not change at all even near the Mott density. In addition, we found that the presence of lowest-subband excitons broadens all absorption peaks, including those in the second-subband range, which provides a consistent explanation for the complex spectral dependence of pump-probe signals reported for SWNTs.Comment: 4 pages, 4 figure

    Effect of Cations on Effective Permeability of Leaf Cuticles to Sulfuric Acid

    Full text link

    The PiSpec: A Low-Cost, 3D-Printed Spectrometer for Measuring Volcanic SO2 Emission Rates

    Get PDF
    Spectroscopy has been used to quantify volcanic gas emission rates, most commonly SO2, for a number of decades. Typically, commercial spectrometers costing 1000s USD are employed for this purpose. The PiSpec is a new, custom-designed, 3D-printed spectrometer based on smartphone sensor technology. This unit has ≈1 nm spectral resolution and a spectral range in the ultraviolet of ≈280–340 nm, and is specifically configured for the remote sensing of SO2 using Differential Optical Absorption Spectroscopy (DOAS). Here we report on the first field deployment of the PiSpec on a volcano, to demonstrate the proof of concept of the device’s functionality in this application area. The study was performed on Masaya Volcano, Nicaragua, which is one of the largest emitters of SO2 on the planet, during a period of elevated activity where a lava lake was present in the crater. Both scans and traverses were performed, with resulting emission rates ranging from 3.2 to 45.6 kg s−1 across two measurement days; these values are commensurate with those reported elsewhere in the literature during this activity phase (Aiuppa et al., 2018; Stix et al., 2018). Furthermore, we tested the PiSpec’s thermal stability, finding a wavelength shift of 0.046 nm/∘C between 2.5 and 45∘C, which is very similar to that of some commercial spectrometers. Given the low build cost of these units (≈500 USD for a one-off build, with prospects for further price reduction with volume manufacture), we suggest these units hold considerable potential for volcano monitoring operations in resource limited environments

    Perfect hypermomentum fluid: variational theory and equations of motion

    Full text link
    The variational theory of the perfect hypermomentum fluid is developed. The new type of the generalized Frenkel condition is considered. The Lagrangian density of such fluid is stated, and the equations of motion of the fluid and the Weyssenhoff-type evolution equation of the hypermomentum tensor are derived. The expressions of the matter currents of the fluid (the canonical energy-momentum 3-form, the metric stress-energy 4-form and the hypermomentum 3-form) are obtained. The Euler-type hydrodynamic equation of motion of the perfect hypermomentum fluid is derived. It is proved that the motion of the perfect fluid without hypermomentum in a metric-affine space coincides with the motion of this fluid in a Riemann space.Comment: REVTEX, 23 pages, no figure

    Ki67 expression levels are a better marker of reduced melanoma growth following MEK inhibitor treatment than phospho-ERK levels

    Get PDF
    The loss of tumour phospho-extracellular responsive kinase (pERK) positivity is the major treatment biomarker for mitogen-activated protein kinase/extracellular responsive kinase (MEK) inhibitors. Here, we demonstrate that there is a poor correlation between pERK inhibition and the anti-proliferative effects of MEK inhibitors in melanoma cells. We suggest that Ki67 is a better biomarker for future clinical studies

    Evidence for the Early Evolutionary Loss of the M20D Auxin Amidohydrolase Family from Mosses and Horizontal Gene Transfer from Soil Bacteria of Cryptic Hydrolase Orthologues to Physcomitrella patens

    Get PDF
    Inactive auxin conjugates are accumulated in plants and hydrolyzed to recover phytohormone action. A family of metallopeptidase orthologues has been conserved in Plantae to help regulate auxin homeostatic levels during growth and development. This hydrolase family was recently traced back to liverwort, the most ancient extant land plant lineage. Liverwort’s auxin hydrolase has little activity against auxin conjugate substrates and does not appear to actively regulate auxin. This finding, along with data that shows moss can synthesize auxin conjugates, led to examining another bryophyte lineage, Physcomitrella patens. We have identified and isolated three M20D hydrolase paralogues from moss. The isolated enzymes strongly recognize and cleave a variety of auxin conjugates, including those of indole butyric and indole propionic acids. These P. patens hydrolases not only appear to be “cryptic”, but they are likely to have derived from soil bacteria through Horizontal Gene Transfer. Additionally, support is presented that the plant-type M20D peptidase family may have been universally lost from mosses after divergence from the common ancestor with liverwort

    Abundance analysis of two late A-type stars HD 32115 and HD 37594

    Full text link
    We have performed abundance analysis of two slowly rotating, late A-type stars, HD 32115 (HR 1613) and HD 37594 (HR 1940), based on obtained echelle spectra covering the spectral range 4000-9850 AAngstrom. These spectra allowed us to identify an extensive line list for 31 chemical elements, the most complete to date for A-type stars. Two approaches to abundance analysis were used, namely a ``manual'' (interactive) and a semi-automatic procedure for comparison of synthetic and observed spectra and equivalent widths. For some elements non-LTE (NLTE) calculations were carried out and the corresponding corrections have been applied. The abundance pattern of HD 32115 was found to be very close to the solar abundance pattern, and thus may be used as an abundance standard for chemical composition studies in middle and late A stars. Further, its H-alpha line profile shows no core-to-wing anomaly like that found for cool Ap stars and therefore also may be used as a standard in comparative studies of the atmospheric structures of cool, slowly rotating Ap stars. HD 37594 shows a metal deficiency at the level of -0.3 dex for most elements and triangle-like cores of spectral lines. This star most probably belongs to the Delta Scuti group.Comment: 10 pages, 4 figure

    The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)

    Full text link
    We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450 microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The flux density at both wavelengths has increased dramatically since 2001, and is consistent with continued cooling of the dust shell in which Sakurai's Object is still enshrouded, and which still dominates the near-infrared emission. Assuming that the dust shell is optically thin at sub-millimetre wavelengths and optically thick in the near-infrared, the sub-millimetre data imply a mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75. This is consistent with the evidence from 1-5micron observations that the mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA
    • 

    corecore