151 research outputs found

    Sequential Metric Dimension

    Get PDF
    International audienceSeager introduced the following game in 2013. An invisible and immobile target is hidden at some vertex of a graph GG. Every step, one vertex vv of GG can be probed which results in the knowledge of the distance between vv and the target. The objective of the game is to minimize the number of steps needed to locate the target, wherever it is. We address the generalization of this game where k≄1k ≄ 1 vertices can be probed at every step. Our game also generalizes the notion of the metric dimension of a graph. Precisely, given a graph GG and two integers k,≄1k, ≄ 1, the Localization Problem asks whether there exists a strategy to locate a target hidden in GG in at most steps by probing at most kk vertices per step. We show this problem is NP-complete when kk (resp.,) is a fixed parameter. Our main results are for the class of trees where we prove this problem is NP-complete when kk and are part of the input but, despite this, we design a polynomial-time (+1)-approximation algorithm in trees which gives a solution using at most one more step than the optimal one. It follows that the Localization Problem is polynomial-time solvable in trees if kk is fixed

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    Analysis of rainfall seasonality from observations and climate models

    Get PDF
    Two new indicators of rainfall seasonality based on information entropy, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere--ocean general circulation models. The RE provides a measure of the number of wet months and, for precipitation regimes featuring a distinct wet and dry season, it is directly related to the duration of the wet season. The DSI combines the rainfall intensity with its degree of seasonality and it is an indicator of the extent of the global monsoon region. We show that the RE and the DSI are fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercomparison and ranking. Regions with different precipitation regimes are classified and characterized in terms of RE and DSI. Comparison of different land observational datasets reveals substantial difference in their local representation of seasonality. It is shown that two-dimensional maps of RE provide an easy way to compare rainfall seasonality from various datasets and to determine areas of interest. Models participating to the Coupled Model Intercomparison Project platform, Phase 5, consistently overestimate the RE over tropical Latin America and underestimate it in West Africa, western Mexico and East Asia. It is demonstrated that positive RE biases in a general circulation model are associated with excessively peaked monthly precipitation fractions, too large during the wet months and too small in the months preceding and following the wet season; negative biases are instead due, in most cases, to an excess of rainfall during the premonsoonal months

    Properties of galaxies reproduced by a hydrodynamic simulation.

    Get PDF
    Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales

    Search for the standard model Higgs boson at LEP

    Get PDF

    A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star

    Get PDF
    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed^1, 2. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life^3. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration^4, 5. Other theories posit that planet assembly at small orbital separations may be common^6, 7, 8. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation

    Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 36 (2011): 2295-2312, doi:10.1007/s00382-010-0764-8.The winter response of the coupled atmosphere-ocean mixed layer system to anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is investigated by means of experiments with an atmospheric general circulation model coupled to an entraining ocean mixed layer model in the extra-tropics. The direct response consists of positive SST anomalies along the Kuroshio Extension and a baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North Pacific. The low-level component of this atmospheric circulation response is weaker in the case without coupling to an extratropical ocean mixed layer, especially in late winter. The inclusion of an interactive mixed layer in the tropics modifies the direct coupled atmospheric response due to a northward displacement of the Pacific Inter-Tropical Convergence Zone which drives an equivalent barotropic anomalous ridge over the North Pacific. Although the tropically-driven component of the North Pacific atmospheric circulation response is comparable to the direct response in terms of sea level pressure amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating effect of the relatively broad spatial scale of the tropically-forced atmospheric teleconnection.We gratefully acknowledge financial support from NOAA’s Office of Global Programs (grant to C. Deser and Y.-O. Kwon). Y.-O. Kwon is also supported through the Claudia Heyman Fellowship of the WHOI Ocean Climate Change Institute
    • 

    corecore