Abstract

International audienceSeager introduced the following game in 2013. An invisible and immobile target is hidden at some vertex of a graph GG. Every step, one vertex vv of GG can be probed which results in the knowledge of the distance between vv and the target. The objective of the game is to minimize the number of steps needed to locate the target, wherever it is. We address the generalization of this game where k1k ≥ 1 vertices can be probed at every step. Our game also generalizes the notion of the metric dimension of a graph. Precisely, given a graph GG and two integers k,1k, ≥ 1, the Localization Problem asks whether there exists a strategy to locate a target hidden in GG in at most steps by probing at most kk vertices per step. We show this problem is NP-complete when kk (resp.,) is a fixed parameter. Our main results are for the class of trees where we prove this problem is NP-complete when kk and are part of the input but, despite this, we design a polynomial-time (+1)-approximation algorithm in trees which gives a solution using at most one more step than the optimal one. It follows that the Localization Problem is polynomial-time solvable in trees if kk is fixed

    Similar works