297 research outputs found

    Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives

    Get PDF
    Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue

    Maintaining over time Clinical Performance targets on Anaemia correction in unselected population on chronic dialysis at 20 Italian Centres. Data from a retrospective study for a Clinical Audit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Italian and European Best Practice Guidelines (EBPG) recommend a target haemoglobin value greater than 11 g/dl in most patients with Chronic Kidney Diseases. However, it is still difficult to maintain these values at a steady rate. Thus, the main aim of the study was to evaluate, throughout 2005, how many patients steadily maintained the performance targets related to anaemia treatment.</p> <p>Methods</p> <p>The survey was conducted on 3283 patients on haemodialysis (HD) and peritoneal dialysis (PD) at 20 Italian dialysis centres. 540 patients were randomly selected; each centre provided a statistically significant sample proportional to its total number of patients. Maintenance of the following target levels was assessed over time: Haemoglobin (HB) 11-12 gr/dl; Iron: 60-160 mcg/dl; Ferritin: 30-400 mcg/l; Transferrin: 200-360 mg/dl; Transferrin saturation percentage (TSAT %):> 25 <50; Dialysis doses (KT/V): >1.2 <2.0 for non-diabetic HD patients; >1.5 <2.2 for diabetic HD patients; DP: >1.8 <2.5.</p> <p>Outcome included:</p> <p indent="1">1- Percentage of target maintenance for each parameter.</p> <p indent="1">2- Erythropoietin dose in relation to dialysis techniques, presence of cancer or myeloma, diabetic status, Vitamin B therapy.</p> <p indent="1">3- Erythropoietin dose (International Units/kg/week) (IU/kg/wk) depending on: haemoglobin values, hospitalization of more than 3 days.</p> <p>Results</p> <p>Mean age was 65.1; mean haemoglobin concentration over the whole population was 11.3 gr/dl (Standard Deviation (SD): 0.91). The clinical performance targets were maintained over time as follows: HB: 4.3% (Mean 11.43 gr/dl) (SD: 0.42); Ferritin: 71.1% (Mean: 250.23 mcg/L (SD:104.07); Iron: 95.0% (Mean 59.79 mcg/dl)(SD:16.76); Transferrin: 44.8% (Mean 216.83 mg/dl) (SD: 19,50); TSAT %: in 8.4% (Mean: 34.33% (SD: 6.56); HD KT/V: 61.0% (Mean:1.46) (SD: 0.7); PD KT/V:31.4% (Mean: 2.10) (SD: 0.02). The average weekly dose of Erythropoietin (IU/Kg/Wk) was significantly lower for the peritoneal dialysis technique; the higher haemoglobin values, the lower the Erythropoietin dose (IU/Kg/Wk).</p> <p>Conclusion</p> <p>A very low percentage of patients maintained haemoglobin target values over time. We need to identify precise criteria to evaluate the stability over time of clinical performance targets proposed by the guidelines.</p

    Mobilization of healthy donors with plerixafor affects the cellular composition of T-cell receptor (TCR)-αβ/CD19-depleted haploidentical stem cell grafts

    Get PDF
    Background: HLA-haploidentical hematopoietic stem cell transplantation (HSCT) is suitable for patients lacking related or unrelated HLA-matched donors. Herein, we investigated whether plerixafor (MZ), as an adjunct to G-CSF, facilitated the collection of mega-doses of hematopoietic stem cells (HSC) for TCR-αβ/CD19-depleted haploidentical HSCT, and how this agent affects the cellular graft composition. Methods: Ninety healthy donors were evaluated. Single-dose MZ was given to 30 ‘poor mobilizers’ (PM) failing to attain ≥40 CD34+ HSCs/μL after 4 daily G-CSF doses and/or with predicted apheresis yields ≤12.0x106 CD34+ cells/kg recipient’s body weight. Results: MZ significantly increased CD34+ counts in PM. Naïve/memory T and B cells, as well as natural killer (NK) cells, myeloid/plasmacytoid dendritic cells (DCs), were unchanged compared with baseline. MZ did not further promote the G-CSF-induced mobilization of CD16+ monocytes and the down-regulation of IFN-γ production by T cells. HSC grafts harvested after G-CSF + MZ were enriched in myeloid and plasmacytoid DCs, but contained low numbers of pro-inflammatory 6-sulfo-LacNAc+ (Slan)-DCs. Finally, children transplanted with G-CSF + MZ-mobilized grafts received greater numbers of monocytes, myeloid and plasmacytoid DCs, but lower numbers of NK cells, NK-like T cells and Slan-DCs. Conclusions: MZ facilitates the collection of mega-doses of CD34+ HSCs for haploidentical HSCT, while affecting graft composition

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules

    Modulation of calcification of vascular smooth muscle cells in culture by calcium antagonists, statins, and their combination

    Get PDF
    Background Vascular calcification is an organized process in which vascular smooth muscle cells (VSMCs) are implicated primarily. The purpose of the present study was to assess the effects of calcium antagonists and statins on VSMC calcification in vitro. Methods VSMC calcification was stimulated by incubation in growth medium supplemented with 10 mmol/l β-glycerophosphate, 8 mmol/l CaCl2, 10 mmol/l sodium pyruvate, 1 μmol/l insulin, 50 μg/ml ascorbic acid, and 100 nmol/l dexamethasone (calcification medium). Calcification, proliferation, and apoptosis of VSMCs were quantified. Results Calcium deposition was stimulated dose-dependently by β-glycerophosphate, CaCl2, and ascorbic acid (all P < 0.01). Addition of amlodipine (0.01–1 μmol/l) to the calcification medium did not affect VSMC calcification. However, atorvastatin (2–50 μmol/l) stimulated calcium deposition dose-dependently. Combining treatments stimulated calcification to a degree similar to that observed with atorvastatin alone. Both atorvastatin and amlodipine inhibited VSMC proliferation at the highest concentration used. Only atorvastatin (50 μmol/l) induced considerable apoptosis of VSMCs. Conclusion In vitro calcification of VSMCs is not affected by amlodipine, but is stimulated by atorvastatin at concentrations ≥10 μmol/l, which could contribute to the plaque-stabilizing effect reported for statins

    Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder

    Get PDF
    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections

    Endotoxaemia in Haemodialysis: A Novel Factor in Erythropoetin Resistance?

    Get PDF
    Background/Objectives Translocated endotoxin derived from intestinal bacteria is a driver of systemic inflammation and oxidative stress. Severe endotoxaemia is an underappreciated, but characteristic finding in haemodialysis (HD) patients, and appears to be driven by acute repetitive dialysis induced circulatory stress. Resistance to erythropoietin (EPO) has been identified as a predictor of mortality risk, and associated with inflammation and malnutrition. This study aims to explore the potential link between previously unrecognised endotoxaemia and EPO Resistance Index (ERI) in HD patients. Methodology/Principal Findings 50 established HD patients were studied at a routine dialysis session. Data collection included weight, BMI, ultrafiltration volume, weekly EPO dose, and blood sampling pre and post HD. ERI was calculated as ratio of total weekly EPO dose to body weight (U/kg) to haemoglobin level (g/dL). Mean haemoglobin (Hb) was 11.3±1.3 g/dL with a median EPO dose of 10,000 [IQR 7,500–20,000] u/wk and ERI of 13.7 [IQR 6.9–23.3] ((U/Kg)/(g/dL)). Mean pre-HD serum ET levels were significantly elevated at 0.69±0.30 EU/ml. Natural logarithm (Ln) of ERI correlated to predialysis ET levels (r = 0.324, p = 0.03) with a trend towards association with hsCRP (r = 0.280, p = 0.07). Ln ERI correlated with ultrafiltration volume, a driver of circulatory stress (r = 0.295, p = 0.046), previously identified to be associated with increased intradialytic endotoxin translocation. Both serum ET and ultrafiltration volume corrected for body weight were independently associated with Ln ERI in multivariable analysis. Conclusions This study suggests that endotoxaemia is a significant factor in setting levels of EPO requirement. It raises the possibility that elevated EPO doses may in part merely be identifying patients subjected to significant circulatory stress and suffering the myriad of negative biological consequences arising from sustained systemic exposure to endotoxin

    Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients

    Get PDF
    Background: Treatment with selective vitamin D receptor activators such as paricalcitol have been shown to exert an anti-inflammatory effect in patients on hemodialysis, in addition to their action on mineral metabolism and independently of parathyroid hormone (PTH) levels. The objective of this study was to evaluate the additional antioxidant capacity of paricalcitol in a clinical setting. Methods: The study included 19 patients with renal disease on hemodialysis, of whom peripheral blood was obtained for analysis at baseline and three months after starting intravenous paricalcitol treatment. The following oxidizing and inflammatory markers were quantified: malondialdehyde (MDA), nitrites and carbonyl groups, indoleamine 2,3-dioxygenase (IDO), tumor necrosis factor alfa (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP). Of the antioxidants and anti-inflammatory markers, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), thioredoxin, and interleukin-10 (IL-10) levels were obtained. Results: Baseline levels of oxidation markers MDA, nitric oxide and protein carbonyl groups significantly decreased after three months on paricalcitol treatment, while levels of GSH, thioredoxin, catalase and SOD activity significantly increased. After paricalcitol treatment, levels of the inflammatory markers CRP, TNF-α, IL-6 and IL-18 were significantly reduced in serum and the level of anti-inflammatory cytokine IL-10 was increased. Conclusions: In renal patients undergoing hemodialysis, paricalcitol treatment significantly reduces oxidative stress and inflammation, two well known factors leading to cardiovascular damageBackground: Treatment with selective vitamin D receptor activators such as paricalcitol have been shown to exert an anti-inflammatory effect in patients on hemodialysis, in addition to their action on mineral metabolism and independently of parathyroid hormone (PTH) levels. The objective of this study was to evaluate the additional antioxidant capacity of paricalcitol in a clinical setting. Methods: The study included 19 patients with renal disease on hemodialysis, of whom peripheral blood was obtained for analysis at baseline and three months after starting intravenous paricalcitol treatment. The following oxidizing and inflammatory markers were quantified: malondialdehyde (MDA), nitrites and carbonyl groups, indoleamine 2,3-dioxygenase (IDO), tumor necrosis factor alfa (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP). Of the antioxidants and anti-inflammatory markers, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), thioredoxin, and interleukin-10 (IL-10) levels were obtained. Results: Baseline levels of oxidation markers MDA, nitric oxide and protein carbonyl groups significantly decreased after three months on paricalcitol treatment, while levels of GSH, thioredoxin, catalase and SOD activity significantly increased. After paricalcitol treatment, levels of the inflammatory markers CRP, TNF-α, IL-6 and IL-18 were significantly reduced in serum and the level of anti-inflammatory cytokine IL-10 was increased. Conclusions: In renal patients undergoing hemodialysis, paricalcitol treatment significantly reduces oxidative stress and inflammation, two well known factors leading to cardiovascular damage

    AKR1C enzymes sustain therapy resistance in paediatric T-ALL

    Get PDF
    BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (TALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors.METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches.RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment.CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy

    Comparison of hormonal receptor and HER-2 status between breast primary tumours and relapsing tumours: clinical implications of progesterone receptor loss

    Get PDF
    Differences in hormone receptor and HER-2 status between primary tumour and corresponding relapse could have a substantial impact on clinical management of patients. The aim of this study was to evaluate change in expression of hormone receptors and HER-2 status between primary tumour and corresponding local recurrence or distant metastasis. We analysed 140 primary tumours and related recurrent or metastatic samples. Hormone receptors status was evaluated by immunohistochemistry, while HER-2 status by immunohistochemistry and silver in situ hybridisation. A change in HER-2 was rare; 3.7% of cases by immunohistochemistry and only 0.7% by silver in situ hybridisation analysis. A change in estrogen and progesterone receptors was seen in 6.4% and 21.4% of cases, respectively. Estrogen receptor change was not affected by adjuvant therapy, whereas progesterone receptor was influenced by adjuvant chemotherapy associated to hormone therapy (P = 0.0005). A change in progesterone receptor was more frequent in distant metastases than in local recurrences (P = 0.03). In the setting of estrogen receptor positive tumours, patients with progesterone receptor loss in local recurrence had a statistically significant lower median metastasis free survival compared to others patients; progesterone receptor positive, 112 months; progesterone receptor negative, 24 months (P = 0.005). A change between primary tumour and corresponding relapse is frequent for progesterone receptor, infrequent for estrogen receptor and rare for HER-2. In cases with changes in HER-2, it is worthwhile reassessing HER-2 status with both immunohistochemistry and in situ hybridisation analysis. Progesterone receptor loss seems to be influenced by therapy and to correlate with a worse prognosis
    corecore