145 research outputs found

    Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELMα) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    Get PDF
    . and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the remodeling pulmonary vasculature

    Opposing Effects of the Angiopoietins on the Thrombin-Induced Permeability of Human Pulmonary Microvascular Endothelial Cells

    Get PDF
    BACKGROUND: Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1. METHODOLOGY/PRINCIPAL FINDINGS: Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage, P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685 phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER, P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure (P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER and macromolecule passage. CONCLUSIONS/SIGNIFICANCE: Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself. Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and increased gap formation, in the absence of increased RhoA activity

    Model Organisms Reveal Insight into Human Neurodegenerative Disease: Ataxin-2 Intermediate-Length Polyglutamine Expansions Are a Risk Factor for ALS

    Get PDF
    Model organisms include yeast Saccromyces cerevisae and fly Drosophila melanogaster. These systems have powerful genetic approaches, as well as highly conserved pathways, both for normal function and disease. Here, we review and highlight how we applied these systems to provide mechanistic insight into the toxicity of TDP-43. TDP-43 accumulates in pathological aggregates in ALS and about half of FTD. Yeast and fly studies revealed an interaction with the counterparts of human Ataxin-2, a gene whose polyglutamine repeat expansion is associated with spinocerebellar ataxia type 2. This finding raised the hypothesis that repeat expansions in ataxin-2 may associate with diseases characterized by TDP-43 pathology such as ALS. DNA analysis of patients revealed that intermediate-length polyglutamine expansions in ataxin-2 are a risk factor for ALS, such that repeat lengths are greater than normal, but lower than that associated with spinocerebellar ataxia type 2 (SCA2), and are more frequent in ALS patients than in matched controls. Moreover, repeat expansions associated with ALS are interrupted CAA-CAG sequences as opposed to the pure CAG repeat expansions typically associated with SCA2. These studies provide an example of how model systems, when extended to human cells and human patient tissue, can reveal new mechanistic insight into disease

    Duffy blood group gene polymorphisms among malaria vivax patients in four areas of the Brazilian Amazon region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>predominates, because this molecule acts as a receptor for this protozoan. In the present study, Duffy blood group genotyping in <it>P. vivax </it>malaria patients from four different Brazilian endemic areas is reported, exploring significant associations between blood group variants and susceptibility or resistance to malaria.</p> <p>Methods</p> <p>The <it>P. vivax </it>identification was determined by non-genotypic and genotypic screening tests. The Duffy blood group was genotyped by PCR/RFLP in 330 blood donors and 312 malaria patients from four Brazilian Amazon areas. In order to assess the variables significance and to obtain independence among the proportions, the Fisher's exact test was used.</p> <p>Results</p> <p>The data show a high frequency of the <it>FYA/FYB </it>genotype, followed by <it>FYB/FYB, FYA/FYA</it>, <it>FYA/FYB-33 </it>and <it>FYB/FYB-33</it>. Low frequencies were detected for the <it>FYA/FY</it><sup><it>X</it></sup>, <it>FYB/FY</it><sup><it>X</it></sup>, <it>FYX/FY</it><sup><it>X </it></sup>and <it>FYB-33/FYB-33 </it>genotypes. Negative Duffy genotype (<it>FYB-33/FYB-33</it>) was found in both groups: individuals infected and non-infected (blood donors). No individual carried the <it>FY</it><sup><it>X</it></sup><it>/FYB-33 </it>genotype. Some of the Duffy genotypes frequencies showed significant differences between donors and malaria patients.</p> <p>Conclusion</p> <p>The obtained data suggest that individuals with the <it>FYA/FYB </it>genotype have higher susceptibility to malaria. The presence of the <it>FYB-33 </it>allele may be a selective advantage in the population, reducing the rate of infection by <it>P. vivax </it>in this region. Additional efforts may contribute to better elucidate the physiopathologic differences in this parasite/host relationship in regions endemic for <it>P. vivax </it>malaria, in particular the Brazilian Amazon region.</p

    PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27–33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1–3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2

    Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers

    Get PDF
    Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner

    Neural mediators of changes of mind about perceptual decisions

    Get PDF
    Changing one's mind on the basis of new evidence is a hallmark of cognitive flexibility. To revise our confidence in a previous decision, we should use new evidence to update beliefs about choice accuracy. How this process unfolds in the human brain, however, remains unknown. Here we manipulated whether additional sensory evidence supports or negates a previous motion direction discrimination judgment while recording markers of neural activity in the human brain using fMRI. A signature of post-decision evidence (change in log-odds correct) was selectively observed in the activity of posterior medial frontal cortex. In contrast, distinct activity profiles in anterior prefrontal cortex mediated the impact of post-decision evidence on subjective confidence, independently of changes in decision value. Together our findings reveal candidate neural mediators of post-decisional changes of mind in the human brain and indicate possible targets for ameliorating deficits in cognitive flexibility

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
    corecore