848 research outputs found

    Liminality and Ritual in Biographical Work: A Theoretical Framework for Cancer Survivorship

    Get PDF
    This article offers a theoretical framework for understanding the biographical work of cancer survivorship using two concepts from social anthropology: liminality and ritual. The framework is intended to foster greater understanding of survivorship and facilitate innovative psychosocial treatment approaches. First, the concept of biographical work will be defined. The notion of prolonged liminality will then be introduced in relation to the biographical work of cancer survivorship. Finally, the performance of ritual will be suggested as one possible approach to ending prolonged liminality and completing successful biographical work. Ultimately, it is proposed that marking a life transition through ritual may help the cancer survivor to concretize his or her own biographical work. In doing so, he or she may be able to exit the liminal state and integrate the illness experience into a new life narrative, thereby experiencing optimal well-being during the survivorship phase

    Analysis of United Kingdom Off-Highway Construction Machinery Market and Its Consumers Using New-Sales Data

    Get PDF
    The off-highway construction machinery market and its consumers have attracted minimal previous research. This study addresses that void by analyzing annual United Kingdom (UK) (volume/portfolio) new-sales data for the 10 most popular products within that market, 1990–2010 inclusive. Graphical, descriptive statistical, Pearson-correlational, autocorrelational, and elementary modeling are employed to identify contrasts in sales regarding (1) high- and low-volume items; (2) growth trends and significant recessionary effects on volumes; (3) a demand change point circa 1997, since when annual product portfolio has changed little; and (4) product associations in consumer demand. Significant association is demonstrated between demand and construction output, especially with the value of new housing. Subsequently, consumption of wheeled loaders is modeled using construction volume, and demand for mini and crawler excavators is modeled using new-housing data. Time series trends for these machinery types are presented and forecast through 2015. The primary contribution of this study is a deeper understanding of the UK new-machinery market and the predilections of its consumers over the last two decades (to present)

    ACE inhibitor use in patients with myocardial infarction. Summary ofevidence from clinical trials

    Get PDF
    Experimental evidence for the beneficial effects on heart failure of chronic treatment with ACE inhibitors accumulated from early 1980 in experimental models of LV dysfunction secondary to AMI. These studies demonstrated an improvement in hemodynamics, LV remodeling, and mortality with ACE inhibitor treatment. The effect of ACE inhibitors during the acute phase of AMI was less clear, although there was evidence of protection from ischemic damage, possibly mediated by an increase in collateral coronary blood flow

    Theory of Transition Temperature of Magnetic Double Perovskites

    Full text link
    We formulate a theory of double perovskite coumpounds such as Sr2_2FeReO6_6 and Sr2_2FeMoO6_6 which have attracted recent attention for their possible uses as spin valves and sources of spin polarized electrons. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c. We find that TcT_c is determined by a subtle interplay between carrier density and the Fe-Mo/Re site energy difference, and that the non-Fe same-sublattice hopping acts to reduce TcT_c. Our results suggest that presently existing materials do not optimize TcT_c

    Uniaxial Tensile Properties of AS4 3D Woven Composites with Four Different Resin Systems: Experimental Results and Analysis: Property Computations

    Get PDF
    As a part of the NASA Composite Technology for Exploration project, eight different AS4 3D orthogonal woven composite panels were manufactured and were subjected to mechanical testing including uniaxial tension along the weaves' warp direction. Each set, with four different resin systems (KCR-IR6070, EP2400, RTM6, and RS-50), included weave architectures designed using 12K and 6K AS4 carbon fiber yarns. For the tension testing conducted at Room Temperature Ambient (RTA) conditions, the elastic modulus and strength of these eight panels (as-processed and thermally-cycled) were measured and compared while the potential evolution of micro-cracking before and after thermal cycling were monitored via optical microscopy and X-Ray Computed Tomography. The data set also included test results of the as-processed materials at Elevated Temperature Wet (ETW) conditions. In the second part of this study, efforts were made to compute elastic constants for AS4 6K/RTM6 and AS4 12K/RTM6 materials by implementing a finite element approach and the Multiscale Generalized Method of Cells (MSGMC) technique developed at NASA Glenn Research Center. Digimat-FE was used to model the weave architectures, assign properties, calculate yarn properties, create the finite element mesh, and compute the elastic properties by applying periodic boundary conditions to finite element models of each repeating unit cell. The required input data for MSGMC was generated using Matlab from Digimat exported weave information. Experimental and computational results were compared, and the differences and limitations in correlating to the test data were briefly discussed

    High-pressure synthesis, crystal and electronic structures of a new scandium tungstate, Sc0.67WO4

    Full text link
    Negative thermal expansion (NTE) materials possess a low-density, open structure which can respond to high pressure conditions, leading to new compounds and/or different physical properties. Here we report that one such NTE material -- white, insulating, orthorhombic Sc2W3O12 -- transforms into a black compound when treated at 4 GPa and 1400 oC. The high pressure phase, Sc0.67WO4, crystallizes in a defect-rich wolframite-type structure, a dense, monoclinic structure (space group P2/c) containing 1-D chains of edge-sharing WO6 octahedra. The chemical bonding of Sc0.67WO4 vis-a-vis the ambient pressure Sc2W3O12 phase can be understood on the basis of the Sc defect structure. Magnetic susceptibility, resistivity, thermoelectric power and IR spectroscopic measurements reveal that Sc0.67WO4 is a paramagnet whose conductivity is that of a metal in the presence of weak localization and electron-electron interactions. Oxygen vacancies are suggested as a potential mechanism for generating the carriers in this defective wolframite material.Comment: 29 pages total, 1 table, 7 figure

    An amphitropic cAMP-binding protein in yeast mitochondria

    Get PDF
    ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)

    Metallic and nonmetallic double perovskites: A case study of A2_2FeReO6_6 (A= Ca, Sr, Ba)

    Full text link
    We have investigated the structure and electronic properties of ferrimagnetic double perovskites, A2FeReO6 (A= Ca, Sr, Ba). The A=Ba phase is cubic (Fm3m) and metallic, while the A=Ca phase is monoclinic (P21/n) and nonmetallic. 57Fe Mossbauer spectroscopy shows that iron is present mainly in the high-spin (S=5/2) Fe3+ state in the Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. It is argued that a direct Re t2g - Re t2g interaction is the main cause for the metallic character of the Ba compound; the high covalency of Ca-O bonds and the monoclinic distortion (which lifts the degeneracy of t2g states) seem to disrupt the Re-Re interaction in the case of the Ca compound, making it non-metallic for the same electron count.Comment: 1 eps fil

    Technology requirements of exploration beyond Neptune by solar sail propulsion

    Get PDF
    This paper provides a set of requirements for the technology development of a solar sail propelled Interstellar Heliopause Probe mission. The mission is placed in the context of other outer solar systems missions, ranging from a Kuiper Belt mission through to an Oort cloud mission. Mission requirements are defined and a detailed parametric trajectory analysis and launch date scan performed. Through analysis of the complete mission trade space a set of critical technology development requirements are identified which include an advanced lightweight composite High-Gain Antenna, a high-efficiency Ka-band travelling-wave tube amplifier and a radioisotope thermoelectric generator with power density of approximately 12 W/kg. It is also shown that the Interstellar Heliopause Probe mission necessitates the use of a spinning sail, limiting the direct application of current hardware development activities. A Kuiper Belt mission is then considered as a pre-curser to the Interstellar Heliopause Probe, while it is also shown through study of an Oort cloud mission that the Interstellar Heliopause Probe mission is the likely end-goal of any future solar sail technology development program. As such, the technology requirements identified to enable the Interstellar Heliopause Probe must be enabled through all prior missions, with each mission acting as an enabling facilitator towards the next
    corecore