9,290 research outputs found
Microplastic ingestion decreases energy reserves in marine worms
The indiscriminate disposal of plastic to the environment is of concern. Microscopic plastic litter (<5 mm diameter; 'microplastic') is increasing in abundance in the marine environment, originating from the fragmentation of plastic items and from industry and personal-care products [1]. On highly impacted beaches, microplastic concentrations (<1mm) can reach 3% by weight, presenting a global conservation issue [2]. Microplastics are a novel substrate for the adherence of hydrophobic contaminants [1], deposition of eggs [3], and colonization by unique bacterial assemblages [4]. Ingestion by indiscriminate deposit-feeders has been reported, yet physical impacts remain understudied [1]. Here, we show that deposit-feeding marine worms maintained in sediments spiked with microscopic unplasticised polyvinylchloride (UPVC) at concentrations overlapping those in the environment had significantly depleted energy reserves by up to 50% (Figure 1). Our results suggest that depleted energy reserves arise from a combination of reduced feeding activity, longer gut residence times of ingested material and inflammation.This work was funded by the Department for Environment, Food & Rural Affairs; 1-SW-P-N21-000-031-DN-A1-05102. We thank Peter Splatt for SEM imaging assistance, Professor Stuart Bearhop for invaluable comments on the manuscript and Dr. Adil Bakir for UPVC chemistry analyses
On the Prior Sensitivity of Thompson Sampling
The empirically successful Thompson Sampling algorithm for stochastic bandits
has drawn much interest in understanding its theoretical properties. One
important benefit of the algorithm is that it allows domain knowledge to be
conveniently encoded as a prior distribution to balance exploration and
exploitation more effectively. While it is generally believed that the
algorithm's regret is low (high) when the prior is good (bad), little is known
about the exact dependence. In this paper, we fully characterize the
algorithm's worst-case dependence of regret on the choice of prior, focusing on
a special yet representative case. These results also provide insights into the
general sensitivity of the algorithm to the choice of priors. In particular,
with being the prior probability mass of the true reward-generating model,
we prove and regret upper bounds for the
bad- and good-prior cases, respectively, as well as \emph{matching} lower
bounds. Our proofs rely on the discovery of a fundamental property of Thompson
Sampling and make heavy use of martingale theory, both of which appear novel in
the literature, to the best of our knowledge.Comment: Appears in the 27th International Conference on Algorithmic Learning
Theory (ALT), 201
Whole-system approaches to improving the health and wellbeing of healthcare workers: A systematic review
This is the final version of the article. Available from Public Library of Science via the DOI in this record.BACKGROUND: Healthcare professionals throughout the developed world report higher levels of sickness absence, dissatisfaction, distress, and "burnout" at work than staff in other sectors. There is a growing call for the 'triple aim' of healthcare delivery (improving patient experience and outcomes and reducing costs; to include a fourth aim: improving healthcare staff experience of healthcare delivery. A systematic review commissioned by the United Kingdom's (UK) Department of Health reviewed a large number of international healthy workplace interventions and recommended five whole-system changes to improve healthcare staff health and wellbeing: identification and response to local need, engagement of staff at all levels, and the involvement, visible leadership from, and up-skilling of, management and board-level staff. OBJECTIVES: This systematic review aims to identify whole-system healthy workplace interventions in healthcare settings that incorporate (combinations of) these recommendations and determine whether they improve staff health and wellbeing. METHODS: A comprehensive and systematic search of medical, education, exercise science, and social science databases was undertaken. Studies were included if they reported the results of interventions that included all healthcare staff within a healthcare setting (e.g. whole hospital; whole unit, e.g. ward) in collective activities to improve physical or mental health or promote healthy behaviours. RESULTS: Eleven studies were identified which incorporated at least one of the whole-system recommendations. Interventions that incorporated recommendations to address local need and engage the whole workforce fell in to four broad types: 1) pre-determined (one-size-fits-all) and no choice of activities (two studies); or 2) pre-determined and some choice of activities (one study); 3) A wide choice of a range of activities and some adaptation to local needs (five studies); or, 3) a participatory approach to creating programmes responsive and adaptive to local staff needs that have extensive choice of activities to participate in (three studies). Only five of the interventions included substantial involvement and engagement of leadership and efforts aimed at up-skilling the leadership of staff to support staff health and wellbeing. Incorporation of more of the recommendations did not appear to be related to effectiveness. The heterogeneity of study designs, populations and outcomes excluded a meta-analysis. All studies were deemed by their authors to be at least partly effective. Two studies reported statistically significant improvement in objectively measured physical health (BMI) and eight in subjective mental health. Six studies reported statistically significant positive changes in subjectively assessed health behaviours. CONCLUSIONS: This systematic review identified 11 studies which incorporate at least one of the Boorman recommendations and provides evidence that whole-system healthy workplace interventions can improve health and wellbeing and promote healthier behaviours in healthcare staff.Funding provided in part to the European Centre for Environment and Human Health (part of the University of Exeter Medical School) by the European Regional Development Fund Programme 2007 to 2013 (https://www.gov.uk/guidance/erdf-programmes-and-resources) and European Social Fund Convergence Programme for Cornwall and the Isles of Scilly (http://www.erdfconvergence.org.uk/esf). This research was also funded in part by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (http://clahrc-peninsula.nihr.ac.uk/) at the Royal Devon and Exeter NHS Foundation Trust (http://www.rdehospital.nhs.uk/). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Neutrino-driven Explosions
The question why and how core-collapse supernovae (SNe) explode is one of the
central and most long-standing riddles of stellar astrophysics. A solution is
crucial for deciphering the SN phenomenon, for predicting observable signals
such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational
waves, for defining the role of SNe in the evolution of galaxies, and for
explaining the birth conditions and properties of neutron stars (NSs) and
stellar-mass black holes. Since the formation of such compact remnants releases
over hundred times more energy in neutrinos than the SN in the explosion,
neutrinos can be the decisive agents for powering the SN outburst. According to
the standard paradigm of the neutrino-driven mechanism, the energy transfer by
the intense neutrino flux to the medium behind the stagnating core-bounce
shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the
term "turbulence"), revives the outward shock motion and thus initiates the SN
blast. Because of the weak coupling of neutrinos in the region of this energy
deposition, detailed, multidimensional hydrodynamic models including neutrino
transport and a wide variety of physics are needed to assess the viability of
the mechanism. Owing to advanced numerical codes and increasing supercomputer
power, considerable progress has been achieved in our understanding of the
physical processes that have to act in concert for the success of
neutrino-driven explosions. First studies begin to reveal observational
implications and avenues to test the theoretical picture by data from
individual SNe and SN remnants but also from population-integrated observables.
While models will be further refined, a real breakthrough is expected through
the next Galactic core-collapse SN, when neutrinos and gravitational waves can
be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 54 pages, 13 figure
Atom--Molecule Coherence in a Bose-Einstein Condensate
Coherent coupling between atoms and molecules in a Bose-Einstein condensate
(BEC) has been observed. Oscillations between atomic and molecular states were
excited by sudden changes in the magnetic field near a Feshbach resonance and
persisted for many periods of the oscillation. The oscillation frequency was
measured over a large range of magnetic fields and is in excellent quantitative
agreement with the energy difference between the colliding atom threshold
energy and the energy of the bound molecular state. This agreement indicates
that we have created a quantum superposition of atoms and diatomic molecules,
which are chemically different species.Comment: 7 pages, 6 figure
Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)
PMCID: PMC3631194This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers
Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end joining (NHEJ) pathway required for the repair of DNA double strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. Methods: We evaluated clinicopathological significance of DNA-PKcs protein expression in 1161 tumours and DNA-PKcs mRNA expression in 1950 tumours. We correlated DNA-PKcs to other markers of aggressive phenotypes, DNA repair, apoptosis and cell cycle regulation. Results: Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps<0.05). Absence of BRCA1, low XRCC1/SMUG1/APE1/Polβ were also more likely in low DNA-PKcs expressing tumours (ps<0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer specific survival (BCCS) in univariate and multivariate analysis (ps<0.01). At the mRNA level, low DNA-PKcs was associated with PAM50.Her2 and PAM50.LumA molecular phenotypes (ps<0.01) and poor BCSS. In patients with ER positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Conclusions: Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers
A meta-analytic review of stand-alone interventions to improve body image
Objective
Numerous stand-alone interventions to improve body image have been developed. The
present review used meta-analysis to estimate the effectiveness of such interventions, and
to identify the specific change techniques that lead to improvement in body image.
Methods
The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on
improving body image), (b) a control group was used, (c) participants were randomly
assigned to conditions, and (d) at least one pretest and one posttest measure of body
image was taken. Effect sizes were meta-analysed and moderator analyses were conducted.
A taxonomy of 48 change techniques used in interventions targeted at body image
was developed; all interventions were coded using this taxonomy.
Results
The literature search identified 62 tests of interventions (N = 3,846). Interventions produced
a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in
beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies
(d+ = -0.72). However, the effect size for body image was inflated by bias both within
and across studies, and was reliable but of small magnitude once corrections for bias were
applied. Effect sizes for the other outcomes were no longer reliable once corrections for
bias were applied. Several features of the sample, intervention, and methodology moderated
intervention effects. Twelve change techniques were associated with improvements in
body image, and three techniques were contra-indicated.
Conclusions
The findings show that interventions engender only small improvements in body image, and
underline the need for large-scale, high-quality trials in this area. The review identifies effective
techniques that could be deployed in future interventions
- …
