25 research outputs found

    Early prediction of response to radiotherapy and androgen-deprivation therapy in prostate cancer by repeated functional MRI: a preclinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In modern cancer medicine, morphological magnetic resonance imaging (MRI) is routinely used in diagnostics, treatment planning and assessment of therapeutic efficacy. During the past decade, functional imaging techniques like diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI have increasingly been included into imaging protocols, allowing extraction of intratumoral information of underlying vascular, molecular and physiological mechanisms, not available in morphological images. Separately, pre-treatment and early changes in functional parameters obtained from DWMRI and DCEMRI have shown potential in predicting therapy response. We hypothesized that the combination of several functional parameters increased the predictive power.</p> <p>Methods</p> <p>We challenged this hypothesis by using an artificial neural network (ANN) approach, exploiting nonlinear relationships between individual variables, which is particularly suitable in treatment response prediction involving complex cancer data. A clinical scenario was elicited by using 32 mice with human prostate carcinoma xenografts receiving combinations of androgen-deprivation therapy and/or radiotherapy. Pre-radiation and on days 1 and 9 following radiation three repeated DWMRI and DCEMRI acquisitions enabled derivation of the apparent diffusion coefficient (ADC) and the vascular biomarker <it>K</it><sup>trans</sup>, which together with tumor volumes and the established biomarker prostate-specific antigen (PSA), were used as inputs to a back propagation neural network, independently and combined, in order to explore their feasibility of predicting individual treatment response measured as 30 days post-RT tumor volumes.</p> <p>Results</p> <p>ADC, volumes and PSA as inputs to the model revealed a correlation coefficient of 0.54 (p < 0.001) between predicted and measured treatment response, while <it>K</it><sup>trans</sup>, volumes and PSA gave a correlation coefficient of 0.66 (p < 0.001). The combination of all parameters (ADC, <it>K</it><sup>trans</sup>, volumes, PSA) successfully predicted treatment response with a correlation coefficient of 0.85 (p < 0.001).</p> <p>Conclusions</p> <p>We have in a preclinical investigation showed that the combination of early changes in several functional MRI parameters provides additional information about therapy response. If such an approach could be clinically validated, it may become a tool to help identifying non-responding patients early in treatment, allowing these patients to be considered for alternative treatment strategies, and, thus, providing a contribution to the development of individualized cancer therapy.</p

    A Simplified Method to Distinguish Farmed (Salmo salar) from Wild Salmon: Fatty Acid Ratios Versus Astaxanthin Chiral Isomers

    Get PDF
    Mislabeling of farmed and wild salmon sold in markets has been reported. Since the fatty acid content of fish may influence human health and thus consumer behavior, a simplified method to identify wild and farmed salmon is necessary. Several studies have demonstrated differences in lipid profiles between farmed and wild salmon but no data exists validating these differences with government-approved methods to accurately identify the origin of these fish. Current methods are both expensive and complicated, using highly specialized equipment not commonly available. Therefore, we developed a testing protocol using gas chromatography (GC), to determine the origin of salmon using fatty acid profiles. We also compared the GC method with the currently approved FDA (United States Food and Drug Administration) technique that uses analysis of carotenoid optical isomers and found 100% agreement. Statistical validation (n = 30) was obtained showing elevated 18:2n-6 (z = 4.56; P = 0.0001) and decreased 20:1n-9 (z = 1.79; P = 0.07) in farmed samples. The method is suitable for wide adaptation because fatty acid methyl ester analysis is a well-established procedure in labs that conduct analysis of lipid composition and food constituents. GC analysis for determining the origin of North American salmon compared favorably with the astaxanthin isomer technique used by the FDA and showed that the fatty acid 18:2n-6 was the key indicator associated with the origin of these salmon

    The nutritional and cardiovascular health benefits of rapeseed oil-fed farmed salmon in humans are not decreased compared with those of traditionally farmed salmon: a randomized controlled trial

    Get PDF
    Purpose: Farmed fish are increasingly raised on feeds containing vegetable oils, which affects their composition and possibly health properties. We investigated the effects of consuming farmed salmon, raised on different feeding regimes, on nutrient status and health outcomes in healthy subjects.  Methods: Salmon were grown on feeds containing mainly fish oil (FO) or rapeseed oil (RO), resulting in an eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content of fillets of 2.1 or 0.9 g/100 g, respectively. In a randomized parallel controlled trial, 51 healthy subjects were allocated to consume 2 portions/week of FO salmon (n = 17), RO salmon (n = 17) or no additional salmon (Control, n = 17) as part of their habitual diet, for 18 weeks. We collected blood at 0, 9 and 18 weeks to measure omega-3 index (O3I) in red blood cells, plasma markers of cardiovascular risk, serum 25(OH)-vitamin D 3 (25(OH)D 3) and plasma trace elements.  Results: After 18 weeks, O3I was similarly increased in subjects consuming 2 portions/week of FO or RO salmon compared to control (both p < 0.05). Serum 25(OH)D 3 was significantly higher, whereas plasma triacylglycerols were significantly lower in subjects consuming RO salmon compared to control (both p < 0.05). Heart rate was significantly lower in subjects consuming FO salmon after 9 weeks, compared to control (p < 0.01). Salmon consumption did not affect other markers.  Conclusion: Consuming two portions/week of salmon raised on rapeseed oil rather than fish oil increased the O3I and vitamin D status, and decreased plasma triacylglycerols. These outcomes endorse opportunities for developing more sustainable feeds within aquaculture food systems. Clinical trial registry: This trial was registered at clinicaltrials.gov as NCT01916434

    Effects of Arctic Sea Ice Decline on Weather and Climate: A Review

    Get PDF

    Fish Oil Finishing Diet Maintains Optimal n-3 Long-Chain Fatty Acid Content in European Whitefish (Coregonus lavaretus)

    No full text
    This study examined the effect of substituting vegetable oil for fish oil in feed, with subsequent re-introduction of fish oil-rich feed (finishing feeding) in late stages of growth, on the fatty acids of cultivated European whitefish (Coregonus lavaretus). Restorative finishing feeding with fish oil-rich feed for 15 and 25 weeks was sufficient to change the total content of nutritionally valuable long-chain n-3 fatty acids, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), to correspond to that of fish fed the fish oil-rich feed throughout their lifespan. Under natural conditions, 15 and 25 weeks correspond to weight gains of 75% and 100% (i.e. doubling), respectively. Also, the fatty acid profile of the fish was restored after finishing periods of 15 and 25 weeks. Limiting the use of fish oil by lowering the overall fat content of the feed (no vegetable oil added) resulted in a decrease in the long-chain n-3 fatty acids. Based on the results, after receiving a vegetable oil-rich diet, restorative fish oil-rich feeding in the last stages of growth in European whitefish is nutritionally justified in order to balance nutritional gain for consumers with sustainable use of finite marine oils. The results encourage commercial efforts to further utilize and optimize finishing feeding practices.201
    corecore