45 research outputs found

    Conservation performance of different conservation governance regimes in the Peruvian Amazon

    Get PDF
    State-controlled protected areas (PAs) have dominated conservation strategies globally, yet their performance relative to other governance regimes is rarely assessed comprehensively. Furthermore, performance indicators of forest PAs are typically restricted to deforestation, although the extent of forest degradation is greater. We address these shortfalls through an empirical impact evaluation of state PAs, Indigenous Territories (ITs), and civil society and private Conservation Concessions (CCs) on deforestation and degradation throughout the Peruvian Amazon. We integrated remote-sensing data with environmental and socio-economic datasets, and used propensity-score matching to assess: (i) how deforestation and degradation varied across governance regimes between 2006–2011; (ii) their proximate drivers; and (iii) whether state PAs, CCs and ITs avoided deforestation and degradation compared with logging and mining concessions, and the unprotected landscape. CCs, state PAs, and ITs all avoided deforestation and degradation compared to analogous areas in the unprotected landscape. CCs and ITs were on average more effective in this respect than state PAs, showing that local governance can be equally or more effective than centralized state regimes. However, there were no consistent differences between conservation governance regimes when matched to logging and mining concessions. Future impact assessments would therefore benefit from further disentangling governance regimes across unprotected land.This work was supported by the Economic and Social Research Council (grant number ES/I019650/1); Cambridge Political Economy Society; Cambridge Philosophical Society; St John’s College; and the Geography Department at the University of Cambridge

    The environmental impacts of palm oil in context

    Get PDF
    Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons (Mt)), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields5. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 20509. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. 65 Greater research attention needs to be given to investigating the impacts of palm oil production 66 compared to alternatives for the trade-offs to be assessed at a global scale

    Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer

    Get PDF

    Devastating Decline of Forest Elephants in Central Africa.

    Get PDF
    African forest elephants– taxonomically and functionally unique–are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002–2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced
    corecore