64 research outputs found

    Evaluation of Brain Iron Content Based on Magnetic Resonance Imaging (MRI): Comparison among Phase Value, R2* and Magnitude Signal Intensity

    Get PDF
    Background and Purpose: Several magnetic resonance imaging (MRI) techniques are being exploited to measure brain iron levels increasingly as iron deposition has been implicated in some neurodegenerative diseases. However, there remains no unified evaluation of these methods as postmortem measurement isn’t commonly available as the reference standard. The purpose of this study was to make a comparison among these methods and try to find a new index of brain iron. Methods: We measured both phase values and R2 * in twenty-four adults, and performed correlation analysis among the two methods and the previously published iron concentrations. We also proposed a new method using magnitude signal intensity and compared it with R2 * and brain iron. Results: We found phase value correlated with R2 * in substantia nigra (r = 20.723, p,0.001) and putamen (r = 20.514, p = 0.010), while no correlations in red nucleus (r = 20.236, p = 0.268) and globus pallidus (r = 20.111, p = 0.605). And the new magnitude method had significant correlations in red nucleus (r = 20.593, p = 0.002), substantia nigra (r = 20.521, p = 0.009), globus pallidus (r = 20.750, p,0.001) and putamen (r = 20.547, p = 0.006) with R2*. A strong inverse correlation was also found between the new magnitude method and previously published iron concentrations in seven brain regions (r = 20.982, P,0.001). Conclusions: Our study indicates that phase value may not be used for assessing the iron content in some brain region

    Follow-up of atheroma burden with sequential whole body contrast enhanced MR angiography:a feasibility study

    Get PDF
    Assess the feasibility of whole body magnetic resonance angiography (WB-MRA) for monitoring global atheroma burden in a population with peripheral arterial disease (PAD). 50 consecutive patients with symptomatic PAD referred for clinically indicated MRA were recruited. Whole body MRA (WB-MRA) was performed at baseline, 6 months and 3 years. The vasculature was split into 31 anatomical arterial segments. Each segment was scored according to degree of luminal narrowing: 0 = normal, 1 = <50 %, 2 = 50–70 %, 3 = 71–99 %, 4 = vessel occlusion. The score from all assessable segments was summed, and then normalised to the number of assessable vessels. This normalised score was divided by four (the maximum vessel score) and multiplied by 100 to give a final standardised atheroma score (SAS) with a score of 0–100. Progression was assessed with repeat measure ANOVA. 36 patients were scanned at 0 and 6 months, with 26 patients scanned at the 3 years follow up. Only those who completed all three visits were included in the final analysis. Baseline atherosclerotic burden was high with a mean SAS of 15.7 ± 10.3. No significant progression was present at 6 months (mean SAS 16.4 ± 10.5, p = 0.67), however there was significant disease progression at 3 years (mean SAS 17.7 ± 11.5, p = 0.01). Those with atheroma progression at follow-up were less likely to be on statin therapy (79 vs 100 %, p = 0.04), and had significantly higher baseline SAS (17.6 ± 11.2 vs 10.7 ± 5.1, p = 0.043). Follow up of atheroma burden is possible with WB-MRA, which can successfully quantify and monitor atherosclerosis progression at 3 years follow-up

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Epicardial adipose tissue is related to arterial stiffness and inflammation in patients with cardiovascular disease and type 2 diabetes.

    Get PDF
    BACKGROUND: Epicardial adipose tissue (EAT) is an emerging cardio-metabolic risk factor and has been shown to correlate with adverse cardiovascular (CV) outcome; however the underlying pathophysiology of this link is not well understood. The aim of this study was to evaluate the relationship between EAT and a comprehensive panel of cardiovascular risk biomarkers and pulse wave velocity (PWV) and indexed left ventricular mass (LVMI) in a cohort of patients with cardiovascular disease (CVD) and diabetes compared to controls. METHODS: One hundred forty-five participants (mean age 63.9 ± 8.1 years; 61% male) were evaluated. All patients underwent cardiovascular magnetic resonance (CMR) examination and PWV. EAT measurements from CMR were performed on the 4-chamber view. Blood samples were taken and a range of CV biomarkers was evaluated. RESULTS: EAT measurements were significantly higher in the groups with CVD, with or without T2DM compared to patients without CVD or T2DM (group 1 EAT 15.9 ± 5.5 cm2 vs. group 4 EAT 11.8 ± 4.1 cm2, p = 0.001; group 3 EAT 15.1 ± 4.3 cm2 vs. group 4 EAT 11.8 ± 4.1 cm2, p = 0.024). EAT was independently associated with IL-6 (beta 0.2, p = 0.019). When added to clinical variables, both EAT (beta 0.16, p = 0.035) and IL-6 (beta 0.26, p = 0.003) were independently associated with PWV. EAT was significantly associated with LVMI in a univariable analysis but not when added to significant clinical variables. CONCLUSIONS: In patients with cardio-metabolic disease, EAT was independently associated with PWV. EAT may be associated with CVD risk due to an increase in systemic vascular inflammation. Whether targeting EAT may reduce inflammation and/or cardiovascular risk should be evaluated in prospective studies
    • …
    corecore