448 research outputs found

    Developmental and tissue-specific expression of NITRs

    Get PDF
    Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family

    Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea

    Get PDF
    Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems

    Avian Pathogenic Escherichia coli (APEC) Infection Alters Bone Marrow Transcriptome in Chickens

    Get PDF
    Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection

    Native American Children and Their Reports of Hope: Construct Validation of the Children's Hope Scale

    Get PDF
    Child reports of hope continue to be utilized as predictors of positive adjustment; however, the utilization of the hope construct has not been assessed within the culturally diverse Native American child group. The present study investigated the applicability of the Hope theory among 96 Native American children in the Midwest. Measures included the Children’s Hope Scale and a Hope Interview. Native American children in the current sample appear to conceptualize hope as a way to reach goals as did the children in the normative sample. Results from the factor analysis demonstrate that the factor structure found in the current study was similar to the factor structure found in the standardization sample. Because of the similar Hope theory conceptualization and factor structure, interventions focused on the positive psychology construct of hope may be applicable within a Native American child population

    The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with <it>Helicobacter pylori </it>(<it>H. pylori</it>) and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH) events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements.</p> <p>Methods</p> <p>The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the <it>H. pylori</it>-negative gastric mucosa.</p> <p>Results</p> <p>The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the <it>H. pylori</it>-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the <it>H. pylori</it>-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner.</p> <p>Conclusions</p> <p>The overmethylated genes under the influence of retroelement methylation in the <it>H. pylori</it>-infected stomach are demethylated in the gastric cancers influenced by LOH.</p

    Methods for Analyzing the Role of DNA Methylation and Chromatin Structure in Regulating T Lymphocyte Gene Expression

    Get PDF
    Chromatin structure, determined in part by DNA methylation, is established during differentiation and prevents expression of genes unnecessary for the function of a given cell type. We reported that DNA methylation and chromatin structure contributes to lymphoid-specific ITGAL (CD11a) and PRF1 (perforin) expression. We used bisulfite sequencing to compare methylation patterns in the ITGAL promoter and 5' flanking region of T cells and fibroblasts, and in the PRF1 promoter and upstream enhancer of CD4+ and CD8+ T cells with fibroblasts. The effects of methylation on promoter function were tested using regional methylation of reporter constructs, and confirmed by DNA methyltransferase inhibition. The relationship between DNA methylation and chromatin structure was analyzed by DNaseI hypersensitivity. Herein we described the methods and results in greater detail

    Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study

    Get PDF
    African American Men are 65% more likely to develop prostate cancer and are twice as likely to die of prostate cancer, than are Caucasian American Males. The explanation for this glaring health disparity is still unknown; although a number of different plausible factors have been offered including genetic susceptibility and gene-environment interactions. We favor the hypothesis that altered gene expression plays a major role in the disparity observed in prostate cancer incidence and mortality between African American and Caucasian American Males. To discover genes or gene expression pattern(s) unique to African American or to Caucasian American Males that explain the observed prostate cancer health disparity in African American males, we conducted a micro array pilot project study that used prostate tumors with a Gleason score of 6. We compared gene expression profiling in tumors from African-American Males to prostate tumors in Caucasian American Males. A comparison of case-matched ratios revealed at least 67 statistically significant genes that met filtering criteria of at least +/- 4.0 fold change and p < 0.0001. Gene ontology terms prevalent in African American prostate tumor/normal ratios relative to Caucasian American prostate tumor/normal ratios included interleukins, progesterone signaling, Chromatin-mediated maintenance and myeloid dendritic cell proliferation. Functional in vitro assays are underway to determine roles that selected genes in these onotologies play in contributing to prostate cancer development and health disparity

    A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex

    Get PDF
    Three novel and closely related leukocyte immune-type receptors (IpLITR) have been identified in channel catfish (Ictalurus punctatus). These receptors belong to a large polymorphic and polygenic subset of the Ig superfamily with members located on at least three independently segregating loci. Like mammalian and avian innate immune regulatory receptors, IpLITRs have both putative inhibitory and stimulatory forms, with multiple types coexpressed in various lymphoid tissues and clonal leukocyte cell lines. IpLITRs have an unusual and novel relationship to mammalian and avian innate immune receptors: the membrane distal Ig domains of an individual IpLITR are related to fragment crystallizable receptors (FcRs) and FcR-like proteins, whereas the membrane proximal Ig domains are related to several leukocyte receptor complex encoded receptors. This unique composition of Ig domains within individual receptors supports the hypothesis that functionally and genomically distinct immune receptor families found in tetrapods may have evolved from such ancestral genes by duplication and recombination events. Furthermore, the discovery of a large heterogeneous family of immunoregulatory receptors in teleosts, reminiscent of amphibian, avian, and mammalian Ig-like receptors, suggests that complex innate immune receptor networks have been conserved during vertebrate evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00251-006-0134-1 and is accessible for authorized users

    Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study

    Get PDF
    Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results: The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion: enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis
    corecore