1,766 research outputs found

    Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts

    Get PDF
    The syntheses of a range of enantiopure organosulfur donors with hydrogen bonding groups are described including TTF related materials with two, four, six and eight hydroxyl groups and multiple stereogenic centres and a pair of chiral N-substituted BEDT-TTF acetamides. Three charge transfer salts of enantiopure poly-hydroxy-substituted donors are reported, including a 4:1 salt with the meso stereoisomer of the dinuclear [Fe2(oxalate)5 ]4- anion in which both cation and anion have chiral components linked together by hydrogen bonding, and a semiconducting salt with triiodide

    From Ligand to Phosphor: Rapid, Machine-Assisted Synthesis of Substituted Iridium(III) Pyrazolate Complexes with Tuneable Luminescence

    Get PDF
    A first generation machine-assisted approach towards the preparation of hybrid ligand/metal materials has been explored. A comparison of synthetic approaches demonstrates that incorporation of both flow chemistry and microwave heating, can be successfully applied to the rapid synthesis of a range of new phenyl-1H-pyrazoles (ppz) substituted with electron withdrawing groups (-F, -CF3, -OCF3, -SF5), and these, in turn, can be translated in to heteroleptic complexes, [Ir(ppz)2(bipy)]BF4 (bipy = 2,2’-bipyridine). Microwave-assisted syntheses for the IrIII complexes allows isolation of spectroscopically pure species in less than 1 hour of reaction time from IrCl3. All new complexes have been explored photophysically (including nanosecond time-resolved transient absorption spectroscopy), electrochemically and by TD-DFT studies which show that the complexes possess ligand-dependent, and thus, tuneable green-yellow luminescence (500-560 nm), with quantum yields in the range 5-15 %

    Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor

    Get PDF
    A new dual-chain oligothiophene-based organic semiconductor, EH-5T-TTC, is presented. The molecule contains two conjugated chains linked by a fused tetrathiocin core. X-ray crystallography reveals a boat conformation within the 8-membered sulfur heterocycle core and extensive π–π and intermolecular sulfur–sulfur interactions in the bulk, leading to a 2-dimensional structure. This unusual molecule has been studied as a ternary component in organic solar cell blends containing the electron donor PTB7-Th and both fullerene (PC71BM) and non-fullerene acceptors ITIC and EH-IDTBR. By incorporating EH-5T-TTC as a ternary component, the power conversion efficiency of the binary blends containing non-fullerene acceptor increases by 17% (from 7.8% to 9.2%) and by 85% for the binary blend with fullerene acceptor (from 3.3% to 6.3%). Detailed characterisation of the ternary blend systems implies that the ternary small molecule EH-5T-TTC functions differently in polymer:fullerene and polymer:non-fullerene blends and has dual functions of morphology modification and complementary spectral absorption

    Tris-ureas as transmembrane anion transporters

    No full text
    Nine tris-urea receptors (L1–L9) have been synthesised and shown to coordinate to a range of anionic guests both by 1H NMR titration techniques and single crystal X-ray structural analysis. The compounds have been shown to be capable of mediating the exchange of chloride and nitrate and also chloride and bicarbonate across POPC or POPC : cholesterol 7 : 3 vesicle bilayer membranes at low transporter loadings. An interesting dependency of anion transport on the nature of the cation is evidence to suggest that a M+/Cl− cotransport process may also contribute to the release of chloride from the vesicles

    Segregation of in to dislocations in InGaN

    No full text
    Dislocations are one-dimensional topological defects that occur frequently in functional thin film materials and that are known to degrade the performance of InxGa1-xN-based optoelectronic devices. Here, we show that large local deviations in alloy composition and atomic structure are expected to occur in and around dislocation cores in InxGa1-xN alloy thin films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods presented here are also widely applicable for predicting composition fluctuations associated with strain fields in other inorganic functional material thin films

    Dislocation core structures in (0001) InGaN

    Get PDF
    Threading dislocation core structures in c-plane GaN and InxGa1−xN (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and InxGa1−xN. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in InxGa1−xN, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in InxGa1−xN, consistent with predictions from atomistic Monte Carlo simulations.This work was funded in part by the Cambridge Commonwealth Trust, St. John’s College and the EPSRC (grant number EP/I012591/1). MAM acknowledges support from the Royal Society through a University Research Fellowship. Additional support was provided by the EPSRC (Supplementary data for EPSRC [49] is available) through the UK National Facility for Aberration-Corrected STEM (SuperSTEM). The Titan 80-200kV ChemiSTEM™ was funded through HM Government (UK) and is associated with the capabilities of the University of Manchester Nuclear Manufacturing (NUMAN) capabilities. SJH acknowledges funding from the Defence Threat Reduction Agency (DTRA) USA (grant number HDTRA1-12-1-0013). The authors also acknowledge C. M. McGilvery and A. Kovacs for helpful discussions.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by AIP

    Mapping SERS in CB:Au Plasmonic Nanoaggregates

    Get PDF
    In order to optimize surface-enhanced Raman scattering (SERS) of noble metal nanostructures for enabling chemical identification of analyte molecules, careful design of nanoparticle structures must be considered. We spatially map the local SERS enhancements across individual micro-aggregates comprised of monodisperse nanoparticles separated by rigid monodisperse 0.9 nm gaps and show the influence of depositing these onto different underlying substrates. Experiments and simulations show that the gaps between neighbouring nanoparticles dominate the SERS enhancement far more than the gaps between nanoparticles and substrate

    Suture Materials, 1980s: Properties, Uses, and Abuses

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66057/1/j.1365-4362.1982.tb03154.x.pd

    The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia.

    Get PDF
    Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.Funding in the Huntly laboratory comes from Cancer Research UK, Leukemia Lymphoma Research, the Kay Kendal Leukemia Fund, the Leukemia lymphoma Society of America, the Wellcome Trust, The Medical Research Council and an NIHR Cambridge Biomedical Research Centre grant. Patient samples were processed in the Cambridge Blood and Stem Cell Biobank.This is the author accepted manuscript. The final version is available via NPG at http://dx.doi.org/10.1038/onc.2015.9
    corecore