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Abstract: 

Threading dislocation core structures in c-plane GaN and InxGa1-xN (0.057 ≤ x ≤ 0.20) films were 

investigated by aberration-corrected scanning transmission electron microscopy. a-type 

dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in 

both GaN and InxGa1-xN. In contrast, the dissociation lengths of (a+c)-type dislocations are 

reduced and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the 

dissociated (a+c)-type dislocations in InxGa1-xN, which is associated with the segregation of 

indium near (a+c)-type and c-type dislocation cores in InxGa1-xN, consistent with predictions 

from atomistic Monte Carlo simulations.  

Key words: Dislocations, InGaN, core structure, aberration-corrected STEM-HAADF, alloy 
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Introduction 

InxGa1-xN semiconductor materials are widely used in light emitting diodes (LEDs) and laser 

diodes (LDs) [1], and have the potential to be used in solar cells [2] [3] as the direct band gap of 
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InxGa1-xN can be engineered to absorb light over the entire visible spectrum, depending on the In 

content (x) of the film [4]. InxGa1-xN films with a thickness of around 100 nm have been applied 

for solar cell applications [2], whereas InxGa1-xN layers with a thickness between 2 and 5 nm are 

commonly deposited as multiple quantum wells (MQWs) in LEDs and LDs by metalorganic 

vapour-phase epitaxy (MOVPE).  

 

GaN-based alloys usually contain a high density (as high as 5 × 10
9
 cm

-2
) of threading 

dislocations (TDs). These one-dimensional defects originate near the interface between the 

group-III nitride material and the lattice-mismatched substrate [5], and thread up into the active 

regions (InxGa1-xN MQWs) of optoelectronic devices. Three types of TDs are known to occur in 

group-III nitride films: with a-type (usually edge character), (a+c)-type (usually mixed 

character) and c-type Burgers vectors (usually screw character) [6]. Studies show that all c-type 

and (a+c)-type TDs in InxGa1-xN layers open up as inverted hexagonal pyramidal pits at the film 

surface  [7] [8]. These TD endings appear as V-shaped voids in cross-sectional transmission 

electron microscopy (TEM) images of InxGa1-xN films, and are thus known as V-defects. 

Previous studies show that V-defect formation is kinetically-driven and occurs independently of 

(although there have been predictions                 that V-defect formation may be assisted by) the 

presence of indium in the InxGa1-xN layers [9] [10].  

 

Most TDs consist of a core region with broken or ‘wrong’ bonds (e.g. Ga-Ga, N-N), and/or a 

highly strained near-core region [11]. These deviations from ideal bonding introduce electronic 

states within the band gap. States in the band gap can trap carriers and act as carrier scattering 

centres and/or sites of non-radiative recombination [11] [12] [13] [14] [15]. These defects thus 

reduce the efficiencies and lifetimes of LEDs [4], and have been shown to increase leakage 

currents [16]. As the density and position of the electronic states depends on the nature of the 

bonding at and near TD cores, it is important to identify the core structures of TDs in the 

material in order to understand their influence on device properties.  

 

For a-type dislocations in GaN, all recent theoretical and experimental work has revealed that the 

most stable core structure is one that includes adjacent 5- and 7-atom rings in the (0001) plane 

[12] [13] [14] [17] [18] [19]. In addition, structures including 4- [20], 5/7- [21] and 8- [22] atom 
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rings in the (0001) plane have been predicted as stable core structures for a-type dislocations in 

pure InN films, although these have not yet been observed. Experimental data for (a+c)-type 

dislocations in GaN films [23] show two core types, a double 5/6-atom ring structure and a 

dissociated core structure with two (a+c)/2 partial dislocations joined by an extended planar fault 

containing alternating 8-atom and 4-atom rings in the (0001) plane. This fault is also known as 

the Drum type prismatic stacking fault [24]. The core structures of the partial dislocations can 

vary, depending on the length of the extended planar fault [23]. However, although many 

experimental and theoretical studies exist on TD core structures in GaN and InN [12] [13] [14] 

[17] [18] [19] [20] [21] [22] [23] [24], no studies have been performed for the InxGa1-xN alloys 

used in devices. Such studies are important because local compositional fluctuations could 

modify TD core structures, affect the electronic states introduced into the band gap and/or 

influence carrier localisation during device operation. Therefore, this study reports both 

theoretical predictions and statistically reliable experimental data on the core structures of TDs in 

GaN and in InxGa1-xN alloys (0.057 ≤ x ≤ 0.20) with In contents relevant to devices.  

 

Materials and methods 

All InxGa1-xN (0.057 ≤ x ≤ 0.20) samples were grown in a Thomas Swan 6 × 2” close-coupled 

showerhead MOVPE reactor on 3.5 μm thick low dislocation density (LDD) (with threading 

dislocation densities (TDDs) of ~ (2.7 ± 0.5) × 10
8
 cm

-2
)) GaN epilayers grown on sapphire 

(0001) substrates with a miscut of  0.25 ± 10 
o
 towards the < > direction. Trimethylgallium 

(TMG), trimethylindium (TMI) and ammonia were used as precursors for Ga, In and N, 

respectively, using nitrogen (N2) as the carrier gas. The active layer of an LED structure consists 

of thin strained InxGa1-xN MQW layers, where GaN barriers are always grown between the 

alternating InxGa1-xN QWs. This growth is repeated for the number of QWs required, always 

finishing with a GaN barrier layer on top [25]. As the presence of these alternating GaN barrier 

layers may influence the structure of the TD core in the InxGa1-xN layers, the effect of In-alloying 

on the structure and composition of TD core and near core regions in GaN is best investigated by 

studying TD core structures in strained [26] InxGa1-xN epilayer samples. Two epilayer samples, 

one with x = 0.057 ± 0.01 (Sample A) and the other with x = 0.20 ± 0.01 (Sample B) (as 

measured previously by wavelength-dispersive X-ray studies [27]) were grown at temperatures 

of 750 
° 
C and 710 

° 
C. Previous XRD studies on these 160 nm thick samples predicted negligible 
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strain-relaxation for Sample A and a strain relaxation value of 8 ± 1 % for Sample B [26]. Cross-

sectional high-resolution transmission electron microscopy studies for both samples also showed 

the absence of misfit dislocations at the InxGa1-xN/GaN interface, further confirming that these 

films are strained [26]. The indium content of these films was varied by keeping the TMI flux 

constant, and by reducing the reactor susceptor temperature to incorporate more indium into the 

epilayer. Additionally, a 110 nm GaN epilayer (Sample C) was also studied to investigate the 

effect of compressive interfacial strain introduced by indium atoms in the InxGa1-xN layers. This 

sample was grown with all reactor conditions similar to that of Sample A, except that no TMI 

was introduced during the growth of the low-temperature GaN epilayer. For comparison, a GaN 

film (Sample D) grown at 1010 
° 
C on sapphire with no subsequent deposition was also studied 

during the course of this work. Further details of GaN epilayer growth on sapphire are described 

elsewhere [24] [28]. 

 

Plan-view and cross-sectional TEM specimens were prepared for all films by mechanical 

polishing, followed by back-thinning with Ar
+
 ions at 5 kV. The final step involved ion milling 

at 2 keV to minimize specimen damage. Weak-beam dark-field (WBDF) images for all samples 

were acquired at 400 keV on a JEOL 4000 microscope. High-angle annular dark field (HAADF) 

imaging in the scanning transmission electron microscopy (STEM) mode was performed using 

an aberration-corrected Titan
3
 80–300 at 300 keV where at least fifty dislocations were observed 

for each sample for statistical validity. Aberration-corrected high-resolution (HR) STEM-

HAADF images of TD cores were also acquired at 80 keV on a Nion UltrastemTM 100 

microscope to investigate whether the 300 keV beam on the Titan
3
 80-300 introduces any beam 

damage to the TDs. All geometric aberrations in the electron beam probe were corrected up to 

the third order by recording Zemlin tableau diffractograms. All experimental images were 

processed using an average background subtraction filter with a cycle of 20 and 5 steps. Energy 

dispersive X-ray spectroscopy (EDXS) studies were also performed on a probe side aberration-

corrected Titan G2 80-200kV ChemiSTEM electron microscope fitted with the Super-X EDXS 

detector system to study ten (a+c)-type and two c-type dislocations (as only 1% of such type are 

present). All EDXS spectral images were acquired with a probe current of 1 nA and a 

convergence angle of 21 mrad to maximize the measurement of the EDXS signal. Moreover, all 

maps were acquired for a total time of 1200 s with dwell times of 25 μ s/pixel where a spectrum 
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was acquired at every pixel. All data were analyzed using the Bruker Esprit software. Geometric 

phase analysis (GPA) was also carried out to measure strain from the atomic-resolution STEM-

HAADF images. In-plane strain (εxx) maps around dislocations were calculated by taking the 

unstrained region of the image as a reference, similar to the approach used by Mouti et al. [29].  

 

Theoretical predictions were also made using a Metropolis Monte Carlo method, with the 

positions of Ga and In atoms swapped at random within a cylindrical region of 4.46 nm around a 

dislocation core, and with differences in energies between trial configurations calculated by 

geometry optimization using the LAMMPS molecular dynamics code (MD) [30] and Stillinger-

Weber potentials for InN [20] and GaN [31] [32] [33] [34]. Simulation cells were 64 × 64 × 4 

unit cells in size (a = 3.19 Å, c = 5.19 Å, which match those optimized by the Stillinger-Weber 

potential and also the corresponding directions of the supercell, [1 0 0] by [0 1 0] by [0 0 1]) and 

contained a dislocation dipole, with cell dimensions strained to match a GaN lattice. The Monte 

Carlo simulations were continued until the total potential energy of the cell converged, and from 

this equilibrium core configurations were extracted. Further details of this model are available in 

our previous work [33]. 

 

Results and discussion 

WBDF images of Samples A-D are shown in Figure 1. TDs are clearly seen to terminate as V-

defects at the surface of both Sample A and Sample B (as shown in Figure 1 (a, b)). A previous 

report showed that the V-defect density (calculated from the pit density of the AFM images 

acquired for these InxGa1-xN samples [26]) remained constant even when the In content was 

increased from x = 0.057 in Sample A to x = 0.20 in Sample B. The V-defect density remained 

constant at the same density as the c-type and (a+c)-type dislocation density of the GaN template 

on which the InxGa1-xN samples were grown, although the widths and depths of these defects 

increased with increasing In content of the sample (as shown in Figures 1 (a, b)). Basic 

characterization data on V-defects in these InxGa1-xN epilayer samples has been reported in a 

previous publication [26]. 
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The TD core structures for all four samples were studied by HRSTEM-HAADF imaging on the 

Titan
3
 80-300 microscope. The a-type TDs could be distinguished clearly from the (a+c)-type 

dislocations as a-type dislocations do not terminate as V-pits at the surface [7] [8] of Samples A 

and B, and none of the STEM data acquired for a-type dislocations in any of the samples showed 

contrast due to the Eshelby Twist of the lattice which is associated with dislocations having a c-

component of the Burgers vector [35]. However, these samples contained a very low proportion 

of c-type dislocations, meaning that statistically reliable data could not be obtained for this type 

of dislocation. 

 

Our statistically valid HRSTEM-HAADF study shows that the a-type dislocation cores in all 

samples formed 5/7-atom ring structures, independent of growth conditions or In content. The 

effect of growth temperature on the dislocation core structures was investigated by comparing 

Sample C (GaN grown at 750 
° 
C) and Sample D (GaN grown at 1010 

° 
C). In both samples, only 

5/7-atom ring core structures were observed for a-type dislocations, whereas both the 

undissociated double 5/6-atom ring cores and the dissociated cores were observed for (a+c)-type 

dislocations (as summarized in Table 1). The only observed difference between Samples C and 

D was that the average dissociation length for the dissociated (a+c)-type dislocations reduced 

slightly for Sample C, which may be related to the differences in the in-plane strain in the films 

due to growth at different temperatures. This indicates that even large changes in growth 

temperature do not affect dislocation core structures in GaN, and therefore smaller changes in 

growth temperature from 750 
° 

C to 710 
° 

C are unlikely to affect dislocation core structures in 

the InxGa1-xN layers studied in this paper. 

 

The effect of introducing indium during growth was investigated by comparing Sample A 

(In0.057Ga0.943N grown at 750 
° 
C) with Sample C (GaN grown at 750 

° 
C). As indicated in Table 

1, no change occurs for the a-type dislocation cores but there is a tendency towards reduced 

dissociation lengths for the dissociated (a+c)-type dislocations in both InGaN films. This is 

because in addition to the dissociated 7/4/8/4/9-atom rings which have previously been observed 

for GaN samples [24], 7/4/9-atom ring and 7/4/8/5-atom ring dissociated (a+c)-type dislocation 

core structures are also observed in the InxGa1-xN layers (which have not previously been 
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reported). Figure 2 shows micrographs and the corresponding simulated core structures for each 

type of TD found in the InxGa1-xN (x ≤ 0.20) layers. 

 

The appearance of the 7/4/9-atom ring and 7/4/8/5-atom ring (a+c)-type dislocation core 

structures (i.e. the shortening of the (a+c)-dislocation dissociation lengths) can be attributed to 

the segregation of In atoms at or near dislocation cores in InxGa1-xN. As In atoms are relatively 

larger than Ga atoms [36] [37], they are expected to preferably occupy sites in the region of 

tensile strain next to the cores of a-type or (a+c)-type dislocations [37], thereby decreasing the 

elastic strain energy per unit length of the dislocation, thus inhibiting the dislocations from 

dissociating into faults with greater lengths. Previous molecular dynamics simulations also 

indicate that In is expected to bind directly to cores with c-components, decreasing their core 

energies [38] [39]. Previous cathodoluminescence measurements [40] [41] have indirectly 

suggested that In preferentially segregates to dislocation cores in InxGa1-xN, however, direct 

evidence of In segregation to dislocation cores has not been reported in the literature [42] [43]. 

Thus, simultaneous bright-field (BF) images and STEM-EDXS maps of TD terminations as V-

defects were obtained for both the InxGa1-xN samples to observe any In segregation near the TD 

core.  

 

Our STEM-EDXS maps show that In segregates to near-dislocation-core locations for both 

Samples A and B (as shown in Figure 3 (c, d)). The HRSTEM-HAADF images for Sample A 

and Sample B show been shown to possess the 7/4/8/5-atom and the double 5/6-atom TD core 

structures respectively (as shown in Figure 3 (e, f)). As only TDs with c-components open up as 

V-pits [7] [8], and only (a+c)-type TDs have the 7/4/8/5-atom and the double 5/6-atom TD core 

structures (as shown in Figures 2 (a, c)), the TDs observed in Figure 3 are therefore of the (a+c)-

type. Hence, our STEM-EDXS maps confirm that In segregates to (a+c)-type TD cores in 

InxGa1-xN. As a larger aperture was used to increase the STEM-EDXS signal, the spatial 

resolution of the simultaneously acquired STEM-HAADF images was considerably 

compromised. Hence, the atomic columns at TD core locations in Figure 3 (e, f) have been 

labelled to aid the eye. The corresponding MD simulations of core structures observed in Figure 

3 (e, f) are shown in Figures 3 (g, h). 
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Semi-quantitative absorption corrected Cliff-Lorimer [44] analysis was also applied to the region 

around the TD core (marked in Figure 3 (c)) to quantify the amount of In segregation near the 

(a+c)-type TD. The calculations predicted an In composition of 6 ± 1.7 wt%, 10.5 ± 1.7 wt% and 

3 ± 1.7 wt% in the matrix, at the TD core location and between the V-pit facet vertices (region 

marked in Figure 3 (c)), respectively. As the In content in the matrix, measured by the Cliff-

Lorimer analysis is within the error limit of the In content measured by Rutherford back-

scattering studies for Sample A [27], these calculations are highly reliable, and confirm the 

presence of an In-rich region near the TD core, and an In-poor region between the V-defect facet 

vertices.  

 

Monte Carlo simulations were also performed for (a+c)-type TDs in InxGa1-xN with In contents x 

= 0.0625 and x = 0.1875 to provide a comparison for the STEM-EDXS results obtained for 

Samples A and B in Figures 3 (c, d). Images of these simulations are shown in Figure 4 (a, b), 

which indicate preferential segregation of In to the (a+c)-type TDs, with In content in the core 

region predicted to be approximately double that of the bulk, consistent with the STEM-EDXS 

results. 

 

The high-resolution STEM-EDXS data of an (a+c)-type TD in Sample A (as shown in Figure 5 

(a)) also show segregation of In at the apex of the V-pit and at all vertices between the V-defect 

facets ((Figure 3 (c, d)). This is in good agreement with previous theoretical studies which 

predicted local strain relaxation at the apex of the V-pit [45] and preferential segregation of In to 

the vertices of the V-defect [46]. This is because the In-N bond is longer and weaker than the 

Ga-N bond [46] [47], and the In atoms prefer to segregate to the vertices between V-defect facets 

as these facets offer sites of reduced N coordination. 

 

Moreover, a particularly high degree of In segregation was observed at one of the vertices for 

Sample A, as shown in Figures 3 (c) and 5 (a). The STEM-HAADF image presented in Figure 5 

(b) also shows a higher STEM-HAADF contrast at the vertex labelled ‘3’ which could be 

attributed to higher strain or to segregation of elements with higher atomic number Z.  
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The STEM-EDXS elemental map of In (Figure 5 (a)) shows preferential In segregation at the 

same vertex which shows a higher STEM-HAADF contrast in the STEM-HAADF image (Figure 

5 (b)). GPA was performed on the boxed region in the STEM-HAADF image in Figure 5 (b), 

and the colour scale in Figure 5 (c) shows an in-plane x-x strain-map (εxx) of the dislocation 

(where the tensile (+) and compressive (-) regions of strain near the dislocation are marked). The 

presence of the c-component of the (a+c)-type dislocation and In segregation to the core results 

in slight deviations from the perfect compressive-tensile lobe contrast observed in GPA images 

calculated for a-type dislocations [29]. Comparison of Figures 5 (a), (b) and (c) confirm that In 

segregation and higher STEM-HAADF contrast are observed in the tensile strain region of the 

TD.  

 

Furthermore, the STEM-HAADF image of a TD in Sample C (which does not contain any In) 

also shows a higher contrast near the TD core (as seen in Figure 6 (a)). The strain-field map (xx) 

of the TD which shows the tensile and compressive regions of the a-component of the TD was 

superimposed on the HRSTEM-HAADF image of the same TD showing double 5/6-atom core in 

Figure 6 (b) (note that the double 5/6-atom ring core cannot be distinguished clearly from the 8-

atom ring core in these images). The presence of the double 5/6-atom [24] TD core suggests that 

the nature of the TD is (a+c)-type. Thus, the presence of higher STEM-HAADF contrast in the 

tensile strained region of an (a+c)-type TD in Sample C (undoped GaN grown at LT) suggests 

that long-range tensile strain caused by TDs (and not In segregation at TD cores) causes the 

higher HAADF contrast at one of the V-defect facet vertices.  

 

Our results confirm that In preferentially segregates to regions of tensile strain near (a+c)-type 

dislocations in InxGa1-xN (x = 0.057) epilayer samples. These results are consistent with previous 

STEM-HAADF studies on (a+c)-type dislocations in lattice-matched InxAl1-xN (x = 0.18 to 0.20) 

grown on GaN [29] which reported In segregation at the tensile region around an (a+c)-type 

dislocation. 

 

Of course, (a+c)-type dislocations in InxGa1-xN are also terminated by a V-pit during growth, 

which may influence the extent of In segregation. However, modelling the influence of the V-pit 
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is highly challenging and beyond the scope of equilibrium Monte Carlo simulations: it requires 

modelling growth conditions, including kinetic effects, adatom diffusion, and the influence of the 

complex gaseous atmosphere in the growth chamber. However, the observed In segregation is 

highly directional and consistent with our simulations, without showing significant deviations 

from theoretical predictions as would be expected if the V-pit contributed significantly to the In 

distribution.  

 

In segregation was also observed near c-type dislocation cores in InxGa1-xN, where an example 

of In segregation at a c-type TD in Sample A is shown in Figure 7 (a). The screw character of the 

TD was identified from the high-resolution STEM-HAADF image of the core and near core 

region which shows the absence of an extra-half plane (an indicator of the a-component of a 

TD). Moreover, Eshelby Twist, which is an apparent rotation of the lattice caused by the 

relaxation of stresses at the free surface caused by the introduction of a c-type TD into the 

material [35] was observed.  The corresponding Monte Carlo simulation for a c-type TD core in 

In0.057Ga0.943N also shows preferential In segregation to the core region (as shown in Figure 7 

(b)), suggesting that In segregates to both c- and (a+c)-type TDs in InxGa1-xN. The typically low 

prevalence of c-type dislocations in III nitride samples meant that no c-type dislocations were 

observed for In0.20Ga0.80N (Sample B).  

 

All STEM-EDXS experiments were carried out at 300 keV to increase the signal-to-noise ratios 

of the STEM-EDXS signals measured. Although previous studies have observed In clustering 

caused by beam damage in InxGa1-xN samples in the past [48], the In clusters were observed 

throughout the TEM foil under investigation, and not just at the tensile region of the core as is 

observed by our study.  

 

In summary, our results confirm that In segregates to (a+c)-type and c-type dislocation cores in 

InxGa1-xN (x = 0.057 to 0.20). This experimentally-observed composition variation near the 

(a+c)-type and c-type dislocation cores could affect the electronic properties of devices 

containing InxGa1-xN-based active regions. This segregation is also associated with the 

appearance of new (a+c)-type dislocation cores in InxGa1-xN, compared to those found in GaN. 

As the double 5/6-atom core [31] and the 7- and the 9-atom rings at both ends of a dissociated 
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7/4/8/4/9-atom core [34] have all been suggested to introduce deep states in the GaN band gap, 

the new core structures observed for (a+c)-type TDs in InxGa1-xN films are likely to introduce 

additional states in the InxGa1-xN band gap. Therefore, the electronic properties of dislocations in 

InxGa1-xN are likely to be different from those in GaN. At any given dislocation, there will be 

multiple possible spatial distributions of In on the metal sites at and near the dislocation core. 

The electronic structure must therefore be calculated for a statistically appropriate set of multiple 

dislocations, in which each has the same core structure but with In atoms located on different 

sites. This computationally intensive work will be addressed in a future paper. 
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 5/7-atom ring a-

cores % 

Dissociated 

(a+c)-cores % 

Undissociated 

(a+c)-cores 

Dissociation 

length (nm) 

Sample A 100 54 ± 5 46 ± 5 1.11 ± 0.04 

Sample B 100 57 ± 6 43  ± 6 0.95 ± 0.03 

Sample C 100 50 ± 5 50 ± 5 1.46 ± 0.01 

Sample D 100 50 ± 5 50 ± 5 1.85 ± 0.06 

Table 1: Statistics relating to core structure types in Samples A-D obtained by STEM imaging of 

>50 dislocations for each sample. The undissociated (a+c)-cores in all samples include only the 

double 5/6-atom rings (Fig. 2 (a)). 
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Figure 1: Cross-sectional WBDF TEM micrographs acquired under g(3g) conditions to activate g 

= ( ) for Sample (a) A (b) B (c) C and (d) D. 
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Figure 2: Plan-view STEM-HAADF images of (a+c)-type dislocation core structures found in an 

In0.057Ga0.943N epilayer (Sample A) showing (a) undissociated double 5/6- and (b) 7/4/9-atom 

cores and dissociated (c) 7/4/8/5- and (d) 7/4/8/4/9-atom cores, where (e), (f), (g) and (h) are 

obtained from molecular dynamics simulations. White spheres represent Ga atoms and dark 

spheres represent N atoms.  
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Figure 3: BF images obtained at (a+c)-type dislocations which terminate as V-defects at the 

surface of (a) an In0.057Ga0.943N epilayer (Sample A) and (b) an In0.20Ga0.80N epilayer (Sample B) 

with their corresponding STEM-EDXS elemental maps of In, as shown in (c) and (d) 

respectively. The alternating Ga and N atomic columns comprising the TD core structures in (e) 

and (f) are labelled with red dots to aid the eye. The core structures shown in (g) and (h) obtained 

through atomistic modelling are believed to correspond to the core structures reported in (e) and 

(f) respectively. The In content in the regions marked in (c) was quantified by Cliff-Lorimer 

analysis. 

 

 

Figure 4: Monte Carlo simulations show the likelihood of finding In atoms at each atomic 

location for a typical equilibrium configurations of an (a+c)-type dislocation core in InxGa1-xN 



18 

for  (a) x = 0.0625 and (b) x = 0.1875 (using a 2D kernel density estimator). All figures are plan-

view along [0001], with the axes in units of Angstroms. The color scale varies from red (high 

concentration) to dark blue (low concentration, no In atoms), with dislocation cores at the origins 

of both plots. 

 

 

Figure 5: (a) STEM-EDXS In elemental map showing In segregation along vertex 3 of an (a+c)-

type dislocation in In0.057Ga0.943N epilayer (Sample A), (b) shows the corresponding plan-view 

high-resolution STEM-HAADF image of the V-defect shown in (a) and (c) shows the calculated 

x-x GPA strain-map (εxx) of the boxed region in (b), superimposed on its corresponding atomic-

resolution STEM-HAADF image. Atomic columns at the TD core are marked with red dots in 

(c) and vertices between the V-defect facets are labelled numerically in both (a) and (b). 

 

Figure 6: (a) Plan-view STEM-HAADF image of an (a+c)-type TD in Sample C and its 

corresponding (b) strain-field map (xx) superimposed on its STEM-HAADF image, where the 

double 5/6-atom core structure and the tensile and compressive regions near the (a+c)-type TD 

are labelled. 
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Figure 7: (a) STEM-EDXS elemental maps of Ga and In obtained at a c-type TD which 

terminates as a V-defect at the surface of an In0.057Ga0.943N epilayer (Sample A), and (b) shows 

the corresponding Monte Carlo simulation shows the probability of finding In atoms at each 

atomic location for a typical equilibrium configurations of a c-type dislocation core in InxGa1-xN 

with x = 0.0625 (using kernel density estimators). All figures are plan-view along [0001], with 

the axes in units of Angstroms in (c). The color scale in (b) is from red (high concentration) to 

dark blue (low concentration). 

 

 

 

 

 

 

 

 

 

 

  

  

 


