68 research outputs found

    Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over : a randomised controlled trial

    Get PDF
    Background: Observational studies have frequently reported an association between cognitive function and nutrition in later life but randomised trials of B vitamins and antioxidant supplements have mostly found no beneficial effect. We examined the effect of daily supplementation with 11 vitamins and 5 minerals on cognitive function in older adults to assess the possibility that this could help to prevent cognitive decline. Methods: The study was carried out as part of a randomised double blind placebo controlled trial of micronutrient supplementation based in six primary care health centres in North East Scotland. 910 men and women aged 65 years and over living in the community were recruited and randomised: 456 to active treatment and 454 to placebo. The active treatment consisted of a single tablet containing eleven vitamins and five minerals in amounts ranging from 50–210 % of the UK Reference Nutrient Intake or matching placebo tablet taken daily for 12 months. Digit span forward and verbal fluency tests, which assess immediate memory and executive functioning respectively, were conducted at the start and end of the intervention period. Risk of micronutrient deficiency at baseline was assessed by a simple risk questionnaire. Results: For digit span forward there was no evidence of an effect of supplements in all participants or in sub-groups defined by age or risk of deficiency. For verbal fluency there was no evidence of a beneficial effect in the whole study population but there was weak evidence for a beneficial effect of supplementation in the two pre-specified subgroups: in those aged 75 years and over (n 290; mean difference between supplemented and placebo groups 2.8 (95% CI -0.6, 6.2) units) and in those at increased risk of micronutrient deficiency assessed by the risk questionnaire (n 260; mean difference between supplemented and placebo groups 2.5 (95% CI -1.0, 6.1) units). Conclusion: The results provide no evidence for a beneficial effect of daily multivitamin and multimineral supplements on these domains of cognitive function in community-living people over 65 years. However, the possibility of beneficial effects in older people and those at greater risk of nutritional deficiency deserves further attention.Peer reviewedPublisher PD

    Oral vitamin B12 for patients suspected of subtle cobalamin deficiency: a multicentre pragmatic randomised controlled trial

    Get PDF
    BACKGROUND: Evidence regarding the effectiveness of oral vitamin B12 in patients with serum vitamin B12 levels between 125-200 pM/l is lacking. We compared the effectiveness of one-month oral vitamin B12 supplementation in patients with a subtle vitamin B12 deficiency to that of a placebo. METHODS: This multicentre (13 general practices, two nursing homes, and one primary care center in western Switzerland), parallel, randomised, controlled, closed-label, observer-blind trial included 50 patients with serum vitamin B12 levels between 125-200 pM/l who were randomized to receive either oral vitamin B12 (1000 μg daily, N = 26) or placebo (N = 24) for four weeks. The institution's pharmacist used simple randomisation to generate a table and allocate treatments. The primary outcome was the change in serum methylmalonic acid (MMA) levels after one month of treatment. Secondary outcomes were changes in total homocysteine and serum vitamin B12 levels. Blood samples were centralised for analysis and adherence to treatment was verified by an electronic device (MEMS; Aardex Europe, Switzerland). Trial registration: ISRCTN 22063938. RESULTS: Baseline characteristics and adherence to treatment were similar in both groups. After one month, one patient in the placebo group was lost to follow-up. Data were evaluated by intention-to-treat analysis. One month of vitamin B12 treatment (N = 26) lowered serum MMA levels by 0.13 μmol/l (95%CI 0.06-0.19) more than the change observed in the placebo group (N = 23). The number of patients needed to treat to detect a metabolic response in MMA after one month was 2.6 (95% CI 1.7-6.4). A significant change was observed for the B12 serum level, but not for the homocysteine level, hematocrit, or mean corpuscular volume. After three months without active treatment (at four months), significant differences in MMA levels were no longer detected. CONCLUSIONS: Oral vitamin B12 treatment normalised the metabolic markers of vitamin B12 deficiency. However, a one-month daily treatment with 1000 μg oral vitamin B12 was not sufficient to normalise the deficiency markers for four months, and treatment had no effect on haematological signs of B12 deficiency

    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.</p> <p>Methods</p> <p>The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth <it>in vivo </it>were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.</p> <p>Results</p> <p>BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.</p> <p>Conclusions</p> <p>These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.</p

    Vitamin B-12 deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid

    Get PDF
    The risk of nutrient deficiencies increases with age in our modern Western society, and vitamin B(12) deficiency is especially prevalent in the elderly and causes increased homocysteine (Hcy) and methylmalonic acid (MMA) levels. These three factors have been recognized as risk factors for reduced bone mineral density and increased fracture risk, though mechanistic evidence is still lacking. In the present study, we investigated the influence of B(12), Hcy, and MMA on differentiation and activity of bone cells. B(12) deficiency did not affect the onset of osteoblast differentiation, maturation, matrix mineralization, or adipocyte differentiation from human mesenchymal stem cells (hMSCs). B(12) deficiency caused an increase in the secretion of Hcy and MMA into the culture medium by osteoblasts, but Hcy and MMA appeared to have no effect on hMSC osteoblast differentiation. We further studied the effect of B(12), Hcy, and MMA on the formation of multinucleated tartrate-resistant acid phosphatase-positive osteoclasts from mouse bone marrow. We observed that B(12) did not show an effect on osteoclastogenesis. However, Hcy as well as MMA were found to induce osteoclastogenesis in a dose-dependent manner. On the basis of these results, we conclude that B(12) deficiency may lead to decreased bone mass by increased osteoclast formation due to increased MMA and Hcy levels

    Main nutrient patterns and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study.

    Get PDF
    BACKGROUND: Much of the current literature on diet-colorectal cancer (CRC) associations focused on studies of single foods/nutrients, whereas less is known about nutrient patterns. We investigated the association between major nutrient patterns and CRC risk in participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) study. METHODS: Among 477 312 participants, intakes of 23 nutrients were estimated from validated dietary questionnaires. Using results from a previous principal component (PC) analysis, four major nutrient patterns were identified. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed for the association of each of the four patterns and CRC incidence using multivariate Cox proportional hazards models with adjustment for established CRC risk factors. RESULTS: During an average of 11 years of follow-up, 4517 incident cases of CRC were documented. A nutrient pattern characterised by high intakes of vitamins and minerals was inversely associated with CRC (HR per 1 s.d.=0.94, 95% CI: 0.92-0.98) as was a pattern characterised by total protein, riboflavin, phosphorus and calcium (HR (1 s.d.)=0.96, 95% CI: 0.93-0.99). The remaining two patterns were not significantly associated with CRC risk. CONCLUSIONS: Analysing nutrient patterns may improve our understanding of how groups of nutrients relate to CRC

    Genetically predicted circulating B vitamins in relation to digestive system cancers

    Get PDF
    Funder: United Kingdom Research and Innovation Future Leaders Fellowship (MR/T043202/1)Funder: EC‐Innovative Medicines Initiative (BigData@Heart)Funder: Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (204623/Z/16/Z)Abstract: Background: Folate, vitamin B6 and vitamin B12 have been associated with digestive system cancers. We conducted a two-sample Mendelian randomisation study to assess the causality of these associations. Methods: Two, one and 14 independent single nucleotide polymorphisms associated with serum folate, vitamin B6 and vitamin B12 at the genome-wide significance threshold were selected as genetic instruments. Summary-level data for the associations of the vitamin-associated genetic variants with cancer were obtained from the UK Biobank study including 367,561 individuals and FinnGen consortium comprising up to 176,899 participants. Results: Genetically predicted folate and vitamin B6 concentrations were not associated with overall cancer, overall digestive system cancer or oesophageal, gastric, colorectal or pancreatic cancer. Genetically predicted vitamin B12 concentrations were positively associated with overall digestive system cancer (ORSD, 1.12; 95% CI 1.04, 1.21, p = 0.003) and colorectal cancer (ORSD 1.16; 95% CI 1.06, 1.26, p = 0.001) in UK Biobank. Results for colorectal cancer were consistent in FinnGen and the combined ORSD was 1.16 (95% CI 1.08, 1.25, p < 0.001). There was no association of genetically predicted vitamin B12 with any other site-specific digestive system cancers or overall cancer. Conclusions: These results provide evidence to suggest that elevated serum vitamin B12 concentrations are associated with colorectal cancer

    Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism.

    Get PDF
    Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease
    corecore