1,774 research outputs found

    Un visitante en la ruta del migrante. Experiencia en Los Chiles, Costa Rica

    Get PDF
    La zona de río San Juan siempre ha sido un importante lugar de paso de emigrantes nicaragüenses hacia Costa Rica. Desde los años 90 lo es mucho más. La inmensa mayoría de quienes transitan por esa ruta con la ayuda de los “coyotes”, pasan el río y son conducidos hacia los naranjales cercanos a la línea fronteriza, donde a su suerte buscan un espacio abierto y sin vigilancia para cruzar la frontera

    Un visitante en la ruta del migrante. Experiencia en Los Chiles, Costa Rica

    Get PDF

    Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.The Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the global carbon(C)-cycle, and depleted oxygen in Earth’s oceans resulting in marine mass extinction. Numerical models predict that increased organic carbon burial should drive a rise in atmospheric oxygen (pO2) leading to termination of an OAE after ∼1 Myr. Wildfire is highly responsive to changes in pO2 implying that fire-activity should vary across OAEs. Here we test this hypothesis by tracing variations in the abundance of fossil charcoal across the T-OAE. We report a sustained ∼800 kyr enhancement of fire-activity beginning ∼1 Myr after the onset of the T-OAE and peaking during its termination. This major enhancement of fire occurred across the timescale of predicted pO2 variations, and we argue this was primarily driven by increased pO2. Our study provides the first fossil-based evidence suggesting that fire-feedbacks to rising pO2 may have aided in terminating the T-OAE.We thank the Natural Environment Research Council for funding through a studentship grant NE/L501669/1 to S.J.B. C.M.B. acknowledges funding via an ERC Starter Grant ERC-2013-StG-335891-ECOFLAM. S.P.H., T.M.L. and C.M.B. acknowledge funding from the NERC ‘JET’ grant NE/N018508/1, as well as a Royal Society Wolfson Research Merit Award supporting T.M.L

    Synthetic CO, H2 and H I surveys of the second galactic quadrant, and the properties of molecular gas

    Get PDF
    articleWe present CO, H2, H I and HISA (H I self-absorption) distributions from a set of simulations of grand design spirals including stellar feedback, self-gravity, heating and cooling. We replicate the emission of the second galactic quadrant by placing the observer inside the modelled galaxies and post-process the simulations using a radiative transfer code, so as to create synthetic observations. We compare the synthetic data cubes to observations of the second quadrant of the Milky Way to test the ability of the current models to reproduce the basic chemistry of the Galactic interstellar medium (ISM), as well as to test how sensitive such galaxy models are to different recipes of chemistry and/or feedback. We find that models which include feedback and self-gravity can reproduce the production of CO with respect to H2 as observed in our Galaxy, as well as the distribution of the material perpendicular to the Galactic plane. While changes in the chemistry/feedback recipes do not have a huge impact on the statistical properties of the chemistry in the simulated galaxies, we find that the inclusion of both feedback and self-gravity are crucial ingredients, as our test without feedback failed to reproduce all of the observables. Finally, even though the transition from H2 to CO seems to be robust, we find that all models seem to underproduce molecular gas, and have a lower molecular to atomic gas fraction than is observed. Nevertheless, our fiducial model with feedback and self-gravity has shown to be robust in reproducing the statistical properties of the basic molecular gas components of the ISM in our Galaxy.We thank the referee, Ralf Klessen, for his comments that helped strengthen the paper. ADC and CLD acknowledge funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. Fig. 1 was produced using SPLASH (Price 2007). We acknowledge the use of NASA’s SkyView facility (http://skyview.gsfc.nasa.gov) located at NASA Goddard Space Flight Center. We also thank A. Rodrigues for providing high-resolution dust column density maps for benchmarking

    Bacterial persisters are a stochastically formed subpopulation of low-energy cells.

    Get PDF
    Persisters represent a small subpopulation of non- or slow-growing bacterial cells that are tolerant to killing by antibiotics. Despite their prominent role in the recalcitrance of chronic infections to antibiotic therapy, the mechanism of their formation has remained elusive. We show that sorted cells of Escherichia coli with low levels of energy-generating enzymes are better able to survive antibiotic killing. Using microfluidics time-lapse microscopy and a fluorescent reporter for in vivo ATP measurements, we find that a subpopulation of cells with a low level of ATP survives killing by ampicillin. We propose that these low ATP cells are formed stochastically as a result of fluctuations in the abundance of energy-generating components. These findings point to a general "low energy" mechanism of persister formation

    Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle

    Get PDF
    Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles

    Get PDF
    Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a Rotor-based Organelle Viscosity Imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment specific microviscosity measurements via fluorescence lifetime imaging (FLIM). ROVI visualised spatial and temporal dynamics of microviscosity with sub-organellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity amongst individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarisation. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.J.E.C. was funded by a grant from the Alpha-1 Foundation. M.K. was funded by an Imperial College President’s Ph.D. Scholarship and an EPSRC Doctoral Prize Fellowship. R.G.H. and P.J.B. were funded by A*STAR. E.A. is a UK Dementia Research Institute fellow. S.J.M. was funded by the BLF, the MRC, and the Alpha-1 Foundation. M.K.K. and I.L.D. were funded by the EPSRC in the form of Career Acceleration Fellowship to MKK (EP/I003983/1

    Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition

    Get PDF
    This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/t8t302617003m078/Urbanization and industrial activities have contributed to widespread contamination by metals and polycyclic aromatic hydrocarbons, but the combined effects of these toxics on aquatic biota and processes are poorly understood. We examined the effects of cadmium (Cd) and phenanthrene on the activity and diversity of fungi associated with decomposing leaf litter in streams. Leaves of Alnus glutinosa were immersed for 10 days in an unpolluted low-order stream in northwest Portugal to allow microbial colonization. Leaves were then exposed in microcosms for 14 days to Cd (0.06–4.5 mg L−1) and phenanthrene (0.2 mg L−1) either alone or in mixture. A total of 19 aquatic hyphomycete species were found sporulating on leaves during the whole study. The dominant species was Articulospora tetracladia, followed by Alatospora pulchella, Clavatospora longibrachiata, and Tetrachaetum elegans. Exposure to Cd and phenanthrene decreased the contribution of A. tetracladia to the total conidial production, whereas it increased that of A. pulchella. Fungal diversity, assessed as denaturing gradient gel electrophoresis fingerprinting or conidial morphology, was decreased by the exposure to Cd and/or phenanthrene. Moreover, increased Cd concentrations decreased leaf decomposition and fungal reproduction but did not inhibit fungal biomass production. Exposure to phenanthrene potentiated the negative effects of Cd on fungal diversity and activity, suggesting that the co-occurrence of these stressors may pose additional risk to aquatic biodiversity and stream ecosystem functioning.The Portuguese Foundation for the Science and Technology supported this work (POCI/MAR/56964/2004) and S. Duarte (SFRH/BPD/47574/2008

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts
    corecore