929 research outputs found

    Exoanal ultrasound of the anal sphincter: normal anatomy and sphincter defects

    Full text link
    To describe the sonographic appearance of normal anal sphincter anatomy and sphincter defects evaluated with a conventional 5 MHz convex transducer placed on the perineum. Design Prospective, single-blind study. Setting Department of Obstetrics and Gynecology, University of Michigan Medical Center, USA. Population Twenty-five women with symptoms of faecal incontinence, 11 asymptomatic nulliparous women, and 32 asymptomatic parous women. Methods A convex scanner was placed on the perineum with the woman in lithotomy position. Images were taken at three levels of the sphincter canal. Pictures were evaluated by two examiners who were blinded to the case history of the women and to the results of each other for the presence or absence of sphincter defects. Main outcome measures Description of anal sphincter appearance on endoanal ultrasound. Reproducibilty of the evaluation of sphincter defects. Results The internal anal sphincter is visible as a hypoechoic circle; the external anal sphincter shows a hyperechoic pattern. Proximally the sling of the puborectalis muscle is visible. Sphincter defects were detected in 20 women. In all five women who subsequently underwent surgery, the presence and location of the defect was confirmed at the time of surgery. Examiners were in agreement 100% of the time on the presence or absence of internal defects. They disagreed in one patient on the presence of an external defect. Conclusion Exoanal ultrasound provides information on normal anatomy and on defects of the anal sphincter.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75125/1/j.1471-0528.1997.tb12056.x.pd

    Infection Control: Are We Preparing Our Workforce?

    Get PDF
    This is the author accepted manuscript. The final version is available from the British Institute of Radiology via the DOI in this recor

    Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching

    Get PDF
    We demonstrate a significant enhancement in the sensitivity of split ring resonator terahertz metamaterial dielectric sensors by the introduction of etched trenches into their inductive-capacitive gap area, both through finite element simulations and in experiments performed using terahertz time-domain spectroscopy. The enhanced sensitivity is demonstrated by observation of an increased frequency shift in response to overlaid dielectric material of thicknesses up to 18 ÎŒm deposited on to the sensor surface. We show that sensitivity to the dielectric is enhanced by a factor of up to ~2.7 times by the incorporation of locally etched trenches with a depth of ~3.4 ÎŒm, for example, and discuss the effect of the etching on the electrical properties of the sensors. Our experimental findings are in good agreement with simulations of the sensors obtained using finite element methods

    Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach

    Get PDF
    We consider the problem of soft gluon resummation for gauge theory amplitudes and cross sections, at next-to-eikonal order, using a Feynman diagram approach. At the amplitude level, we prove exponentiation for the set of factorizable contributions, and construct effective Feynman rules which can be used to compute next-to-eikonal emissions directly in the logarithm of the amplitude, finding agreement with earlier results obtained using path-integral methods. For cross sections, we also consider sub-eikonal corrections to the phase space for multiple soft-gluon emissions, which contribute to next-to-eikonal logarithms. To clarify the discussion, we examine a class of log(1 - x) terms in the Drell-Yan cross-section up to two loops. Our results are the first steps towards a systematic generalization of threshold resummations to next-to-leading power in the threshold expansion.Comment: 66 pages, 19 figure

    Investigation of the utility of the 1.1B4 cell as a model human beta cell line for study of persistent enteroviral infection.

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record. Data availability: The research data supporting this publication are provided within this paper.The generation of a human pancreatic beta cell line which reproduces the responses seen in primary beta cells, but is amenable to propagation in culture, has long been an important goal in diabetes research. This is particularly true for studies focussing on the role of enteroviral infection as a potential cause of beta-cell autoimmunity in type 1 diabetes. In the present work we made use of a clonal beta cell line (1.1B4) available from the European Collection of Authenticated Cell Cultures, which had been generated by the fusion of primary human beta-cells with a pancreatic ductal carcinoma cell, PANC-1. Our goal was to study the factors allowing the development and persistence of a chronic enteroviral infection in human beta-cells. Since PANC-1 cells have been reported to support persistent enteroviral infection, the hybrid 1.1B4 cells appeared to offer an ideal vehicle for our studies. In support of this, infection of the cells with a Coxsackie virus isolated originally from the pancreas of a child with type 1 diabetes, CVB4.E2, at a low multiplicity of infection, resulted in the development of a state of persistent infection. Investigation of the molecular mechanisms suggested that this response was facilitated by a number of unexpected outcomes including an apparent failure of the cells to up-regulate certain anti-viral response gene products in response to interferons. However, more detailed exploration revealed that this lack of response was restricted to molecular targets that were either activated by, or detected with, human-selective reagents. By contrast, and to our surprise, the cells were much more responsive to rodent-selective reagents. Using multiple approaches, we then established that populations of 1.1B4 cells are not homogeneous but that they contain a mixture of rodent and human cells. This was true both of our own cell stocks and those held by the European Collection of Authenticated Cell Cultures. In view of this unexpected finding, we developed a strategy to harvest, isolate and expand single cell clones from the heterogeneous population, which allowed us to establish colonies of 1.1B4 cells that were uniquely human (h1.1.B4). However, extensive analysis of the gene expression profiles, immunoreactive insulin content, regulated secretory pathways and the electrophysiological properties of these cells demonstrated that they did not retain the principal characteristics expected of human beta cells. Our data suggest that stocks of 1.1B4 cells should be evaluated carefully prior to their use as a model human beta-cell since they may not retain the phenotype expected of human beta-cells.JDRFJDRFMedical Research Council (MRC)Diabetes UKNorman Family TrustEuropean Foundation for the Study of Diabete

    Rapid Change in Articulatory Lip Movement Induced by Preceding Auditory Feedback during Production of Bilabial Plosives

    Get PDF
    BACKGROUND: There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Ίa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. CONCLUSIONS/SIGNIFICANCE: The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded

    Targeted emission reductions from global super-polluting power plant units

    Get PDF
    There are more than 30,000 biomass- and fossil-fuel-burning power plants now operating worldwide, reflecting a tremendously diverse infrastructure, which ranges in capacity from less than a megawatt to more than a gigawatt. In 2010, 68.7% of electricity generated globally came from these power plants, compared with 64.2% in 1990. Although the electricity generated by this infrastructure is vital to economic activity worldwide, it also produces more CO2 and air pollutant emissions than infrastructure from any other industrial sector. Here, we assess fuel- and region-specific opportunities for reducing undesirable air pollutant emissions using a newly developed emission dataset at the level of individual generating units. For example, we find that retiring or installing emission control technologies on units representing 0.8% of the global coal-fired power plant capacity could reduce levels of PM2.5 emissions by 7.7–14.2%. In India and China, retiring coal-fired plants representing 1.8% and 0.8% of total capacity can reduce total PM2.5 emissions from coal-fired plants by 13.2% and 16.0%, respectively. Our results therefore suggest that policies targeting a relatively small number of ‘super-polluting’ units could substantially reduce pollutant emissions and thus the related impacts on both human health and global climate

    Review of recent progress in nanoscratch testing

    Get PDF
    Nanoscratch testing, as an important technique for the assessment of the mechanical failure behaviour and adhesion strength of ceramic coatings and a simulation tool of single asperity contact in tribological experiments, is increasingly becoming an established nanomechanical characterisation method. This paper reviews recent work in nanoscratch testing in different engineering applications including thin ceramic films, automotive organic coatings, chemical- mechanical polishing and biomaterials. In the main part of the paper, nanoscratch results from experiments performed using NanoTest systems fitted with tangential force sensors and spherical indenters as scratch probes are presented and discussed. The types of nanoscratch tests described include constant load nanoscratches, ramped load nanoscratch tests and multipass repetitive unidirectional constant load nanoscratch tests (nanowear). The results are discussed in terms of critical load sensitivity to intrinsic and extrinsic factors, impact of scan speed and loading rate, influence of probe radius and geometry, estimation of tip contact pressure, influence of surface roughness and film stress and thickness, and finally role of ploughing on friction evolution
    • 

    corecore