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Abstract: We demonstrate a significant enhancement in the sensitivity of split ring resonator
terahertz metamaterial dielectric sensors by the introduction of etched trenches into their inductive-
capacitive gap area, both through finite element simulations and in experiments performed using
terahertz time-domain spectroscopy. The enhanced sensitivity is demonstrated by observation of
an increased frequency shift in response to overlaid dielectric material of thicknesses up to 18
µm deposited on to the sensor surface. We show that sensitivity to the dielectric is enhanced by a
factor of up to ∼2.7 times by the incorporation of locally etched trenches with a depth of ∼3.4
µm, for example, and discuss the effect of the etching on the electrical properties of the sensors.
Our experimental findings are in good agreement with simulations of the sensors obtained using
finite element methods.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

In general, metamaterial sensors are designed to resonate strongly with electromagnetic waves at
a specific frequency, determined by geometrical factors such as gap width, metal thickness, and
the periodicity of the elements in the array from which they are formed [1–6]. Various resonances
in metamaterials such as the inductive-capacitive (LC) resonance [7,8], dipole resonance [9], and
quadrupole resonance [10] can be employed, whereby surface current modes are strongly excited
by interaction with the incident electromagnetic radiation. The frequency of the LC resonance in
split-ring resonators (SRRs), which have received particular attention [11–13], can be described
by 1/2π

√
LC, where C is the capacitance of the gap and L is the inductance of the ring [14,15].

This LC resonance in SRRs is particularly attractive in the context of sensing applications since
the presence of dielectric materials in the gap area directly induces a frequency shift [16–19].
The effect of various geometrical parameters, including gap width, metal thickness, and substrate
index on dielectric sensing using terahertz (THz) metamaterials have been explored in some
detail [20–22]. Recent examples of sensing using SRR arrays include the detection of low-density
nano / microscale microorganisms [1,18,23]. A noteworthy enhancement of the sensitivity
was recently obtained by both by substituting for lower-index materials (e.g. quartz) for the
higher-index substrate materials usually employed (e.g. silicon) [23], and by using ultra-thin
substrates [24]. However, semiconductor substrates are typically required to actively control the
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metamaterial response by gated structures [6] while the use of ultra-thin substrates is problematic
in practical devices where integrated fluidic channels need to be incorporated, owing to their
fragility and therefore low durability [25,26]. Therefore, we are motivated to find new ways to
produce sensitivity enhancement using semiconductor substrates which do not employ substrate
thinning.

In this work we introduce localized etching of the active area of THz SRR metamaterials, as a
technique to overcome these limitations, using terahertz time-domain spectroscopy (THz-TDS)
to measure the changes introduced. SRRs containing carefully designed trenches were designed
to enhance their sensitivity, and the resonant frequency shifts (∆f ) of the SRRs observed as
a function both of etch depth, and of thickness of the overlaid dielectric material undergoing
sensing. Additionally, finite element method (FEM) simulations were performed both to aid
explanation and to support our experimental findings.

2. Experimental results and discussions

Figure 1(a) shows a schematic diagram of the metamaterial chips undergoing pulsed THz
measurements along with the polarization direction of the incident THz waves. A linearly
polarized THz pulse was generated by illuminating a bow-tie patterned, voltage-biased LT-GaAs
photoconductive (PC) antenna using an 800 nm wavelength, mode-locked Ti:sapphire laser
(Vitara, Coherent) which provided 20 fs pulses at an 80MHz repetition rate. The time-resolved
THz field was detected by the current generated in a similar PC antenna using a split-off portion
of the same laser beam subjected to a time-delay in a retroreflector mounted on a linear translation
stage. The PC THz emitter and detector each comprised a 2 µm-thick layer of LT-GaAs transferred
on to a 5-mm-thick quartz substrate, fabricated using an epitaxial lift-off method [27].generally obs
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Fig. 1. (a) Schematic of THz transmission experiment for dielectric sensing using the
etched metamaterials. (b) Schematic of THz metamaterials arrays with etched trenches. The
periodicity of the metamaterials unit cells is indicated (c) An SEM image of the metamaterial
with a trench depth of 1.74 µm. Cross-section SEM images of the metamaterials with trench
depths t of (d) 1.74 µm and (e) 130 nm in the gap area.

THz pulses generated from the PC antenna were focused on to the metamaterial surface, formed
on undoped silicon, with a spot size of ∼ 1.2 mm2, which illuminated ∼ 480 SRR elements.
Pulses obtained in transmission through the array were fast Fourier transformed (FFT) and
normalized with respect to reference traces obtained from transmission through an unpatterned
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silicon substrate. All data was collected in a dry air environment with a humidity < 1% to remove
the effect of atmospheric water absorption on the THz signal.
A schematic diagram of the metamaterial arrays incorporating the etched regions, along

with the periodicity of the unit cells is shown in Fig. 1(b). Figure 1(c) shows a scanning
electron microscopy (SEM) cross-sectional image of one metamaterial device prepared with a
1.74-µm-deep trench etched into the LC gap, which was repeated for every SRR element in the
array. All metamaterial patterns were prepared using direct-write laser lithography (MLA150,
Heidelberg Instruments) on a high-resistivity (>10,000 Ω·cm) undoped silicon substrate with
thickness of 525± 25 µm. Ti (10 nm) and Au (100 nm) metal layers deposited by electron-beam
evaporation defined the THz SRR arrays, employing a metal track width of 4 µm, with outer
dimensions of 36 µm × 36 µm, and a gap size of 2.7 µm. As discussed later, this choice of
geometry produces a strong LC resonance at ∼0.8 THz and shows sensitive response to the
change of the dielectric environment as demonstrated in our previous work [21]. Reactive ion
etching (RIE) was then used to form etched trenches within every LC gap. Positive photoresist
(S1813, Shipley Inc., for trench depths < 5 µm, and AZ9260, Micro Chemicals Corp., for trench
depths > 5 µm) was spin-coated and patterned into an etch mask, before trenches were formed
using parallel-plate RIE in a gas mixture of 30 sccm SF6 and 20 sccm O2 at 50 W RF bias at
210 nm/min etch rate. SRR arrays were fabricated with trench depths up to 7.4 µm by adjusting
the etching time. Cross-sectional SEM images of the etched metamaterials with two specimen
trench depths (1.74 µm and 130 nm) in the gap area are shown as examples in Figs. 1(d) and 1(e)
respectively. We note that sloped side walls were generally observed in the fabricated trench
structures owing to a slight isotropy in the etching process.
To understand the effect of the etched trench structure on the effective dielectric permittivity,

we performed finite element simulations using commercial software (ANSYS High Frequency
Structure Simulator, HFSS). A linearly polarized incident THz plane wave and periodic boundary
conditions around a single unit cell were chosen. The SRR itself was considered as a perfect
sheet conductor. The silicon permittivity was taken as 11.8± 0.1, which we obtained using
conventional THz-TDS methods [28]. We first measured both the amplitudes and phases of the
transmitted THz pulse through the silicon substrate, and calculated the permittivity of the silicon
substrate using the measured phase and substrate thickness. The error of 0.1 quoted here in the
silicon permittivity arises from our estimate of error in the silicon substrate thickness.
Figures 2(a) and 2(b) show the 2D electric field distribution near the gap area along the x-y

plane (at z= 0) for metamaterials both without and with the etched trench structures, respectively.
We note that the electric field magnitude in the gap area is significantly decreased when a trench
structure with the depth of 7.4 µm is introduced, as shown in Fig. 2(b). This is owing to a
decrease in capacitance of the gap structure, which is proportional to the effective dielectric
permittivity of the gap. The electric field magnitude along the z-axis at x= 0 and y= 0 (located
at the center of the gap) is plotted in Fig. 2(c). It is clear that the decay length of the electric field
magnitude below the LC gap, within the substrate, is larger for the metamaterials with etched
gap, due to their lower effective permittivity. The simulations also reveal a small shift (∼ 200 nm)
in the position of the maximum electric field magnitude (inset to Fig. 2(c)) below the surface as
expected when the trench structure replaces a portion of the substrate by air.
THz transmission spectra of the SRR arrays with and without the trench structure were

compared to study the effects of etching (see Figs. 3(a) and 3(b) for experiment and simulation
respectively). It is clear that the resonant frequency (f 0) increases as the trench structure is
defined in both simulation and experiment. The Q-factor of the LC resonance decreased from 7.8
to 5.3 with the introduction of the trenches owing to the decrease in the capacitance. The raw
data along with the zero-padded data are shown together in Fig. 3(a). The frequency resolution
of 26.7GHz was obtained from the FFT of the time domain data with a temporal scan length
of 37.5 ps, truncated before the first system reflection. In keeping with previous metamaterials



Research Article Vol. 27, No. 16 / 5 August 2019 / Optics Express 23167

Fig
etch

field
and 
air 

 

THz tr
compared to 
simulation re
structure is d
decreased fro
capacitance. T
The frequency
with the temp
keeping with 
smooth the d
check the imp
procedure for
added to the 
extracted afte
metamaterials
obtained for s
take as the ex
temporal sca
simulations, w
trench observ
frequency of 
experiment an
simulation aft
results quote 
substrate, whi
resonance dep
be expressed 
we can signifi

etched trench
where ߝ  is th
material in th
introduction o
the etched tre

. 2. Field distributi
hing (c) LHS cross

d line profile near t
after (dashed line)
- substrate interfa

ransmission spe
study the ef

spectively). It 
defined in both
m 7.8 to 5.3 w
The raw data a
y resolution o
poral scan len
previous meta
ata and to mo
pact of zero pa
r each time do
time domain 

er Fourier tra
s versus a num
sufficiently larg
xperimental err
an to be used
we used a trape
ved in the SEM

116 GHz (fr
nd 110 GHz 
ter the introduc
here arises fro
ich is propagat
pends strongly
as a combinati

ficantly reduce 

hes. The shift 
e modified ef

he gap area, an
of the dielectri
ench metamater

ion near the SRR s
s section showing 
the center of the ga
) etching. Inset: Cl
ce highlighting the

ectra of the SR
ffects of etchi

is clear that t
h simulation an
with the introd
along with the
f 26.7 GHz w
ngth of 37.5 p
amaterials studi
ore accurately 
adding on the a
omain data set
data before Fo
ansform of th
mbers of zero
ge n, with a re
or. We note th

d which could
ezoidal cross-s
M cross-sectio
om 788 GHz 
(from 794 GH
ction of 3.4-μm
om the experim
ted through to 

y on the effecti
ion of the air an
the effective d

in LC resonan
ffective dielect
nd ୣߝ୤୤ is the e
ic material [16
rials as a funct

surface (at z = 0) f
interface between
ap structure along 
lose-up view of the
e shift in the positi
magnitude. 

RR arrays with 
ng (see Figs. 
the resonant fr
nd experiment

duction of the t
e zero-padded 
as obtained fro

ps, truncated b
ies by THz-TD
extract the pos
assessment of 
t. A numbers 
ourier transfor
he data. Plott
os, a singular 
esidual spread i
hat the use of ul
d overcome t
section to repli
ons (Fig. 1(d))

to 904 GHz)
Hz to 904 GH
m-deep trench s
mental error in

the simulation
ve dielectric p
nd the substrat
dielectric const

nce induced ca
tric constant d
effective dielec
6, 22]. Figure 3
tion of the tren

for (a) before etchi
n silicon and air. R

the z-axis before 
e electric field line
ion of the maximu

and without th
 3(a) and 3(b

frequency (f0) 
t. The Q-facto
trenches owing
data are show
om the FFT o
before the firs
DS we employe
sition of the r
peak position 
of zeros, n, w

rm, allowing t
ting the reson

value of the 
in resonant fre
ltrathin substra
the need for 
icate the slope
. We observed
) with an erro

Hz) with an er
structures. The

n the dielectric
n. In general, t
permittivity in 
te refractive ind
tant of the gap 

an be expresse
due to the pre
ctric constant 
3(c) shows the
nch depth. We 

ing and (b) after 
RHS The electric 

(solid black line) 
e profile near the 
um electric field 

he trench struc
b) for experim
increases as th

or of the LC r
g to the decrea

wn together in F
of the time dom
st system refle
ed zero paddin
resonances [29
we employed 

were then prog
the peak positi
nant frequency

resonant freq
equency, which
ates would allo
this zero pad
d side walls of
d a change in 
or of ±0.6 GH
rror of ±4 GH
e error in the si
c constant of th
the frequency o
the gap area w
dex [21, 31]. T
area by introd

ed by ݂ ൌ ଴݂ሺߝ
esence of the 

in the gap are
e resonant freq
found that the

 

ture were 
ment and 
he trench 
resonance 
ase in the 
Fig. 3(a). 
main data 
ection. In 
ng both to 
9, 30]. To 

the same 
gressively 
ion to be 
y of the 
quency is 
h we then 
ow longer 
dding. In 
f the etch 
resonant 

Hz in the 
Hz in the 
imulation 
he silicon 
of the LC 

which can 
Therefore, 
ducing the ୣߝ/ߝ୤୤ሻିభమ, 
dielectric 
ea before 
quency of 
e resonant 

Fig. 2. Field distribution near the SRR surface (at z= 0) for (a) before etching and (b) after
etching (c) LHS cross section showing interface between silicon and air. RHS The electric
field line profile near the center of the gap structure along the z-axis before (solid black line)
and after (dashed line) etching. Inset: Close-up view of the electric field line profile near the
air - substrate interface highlighting the shift in the position of the maximum electric field
magnitude.

studies by THz-TDS we employed zero padding both to smooth the data and to more accurately
extract the position of the resonances [29,30]. To check the impact of zero padding on the
assessment of peak position we employed the same procedure for each time domain data set.
A numbers of zeros, n, were then progressively added to the time domain data before Fourier
transform, allowing the peak position to be extracted after Fourier transform of the data. Plotting
the resonant frequency of the metamaterials versus a numbers of zeros, a singular value of
the resonant frequency is obtained for sufficiently large n, with a residual spread in resonant
frequency which we then take as the experimental error. We note that the use of ultrathin
substrates would allow longer temporal scan to be used which could overcome the need for
this zero padding. In simulations, we used a trapezoidal cross-section to replicate the sloped
side walls of the etch trench observed in the SEM cross-sections (Fig. 1(d)). We observed a
change in resonant frequency of 116GHz (from 788GHz to 904GHz) with an error of± 0.6GHz
in the experiment and 110GHz (from 794GHz to 904GHz) with an error of± 4GHz in the
simulation after the introduction of 3.4-µm-deep trench structures. The error in the simulation
results quote here arises from the experimental error in the dielectric constant of the silicon
substrate, which is propagated through to the simulation. In general, the frequency of the LC
resonance depends strongly on the effective dielectric permittivity in the gap area which can
be expressed as a combination of the air and the substrate refractive index [21,31]. Therefore,
we can significantly reduce the effective dielectric constant of the gap area by introducing the
etched trenches. The shift in LC resonance induced can be expressed by f = f0(ε/εeff)−

1
2 , where

ε is the modified effective dielectric constant due to the presence of the dielectric material in
the gap area, and εeff is the effective dielectric constant in the gap area before introduction of
the dielectric material [16,22]. Figure 3(c) shows the resonant frequency of the etched trench
metamaterials as a function of the trench depth. We found that the resonant frequency of the
metamaterials increases gradually with the etching depth. The resonant frequency shift then
progressively saturated for large trench depths, which occurs since the evanescent field in the gap
area is highly confined near the surface (within ∼ 10 µm) [20]. The deepest trench depth we could
reliably obtain experimentally was ∼7.4 µm, limited by the isotropy of the RIE etch process,
which produced increasingly angled side walls shown in Fig. 1(d). Our experimental findings are
in good agreement with the predictions of the simulation, although small systematic deviations
(of order a few GHz, or ∼0.5%) were observed, probably owing to limitations in the spatial
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resolution of the lithographic technique used during fabrication, and due to our simplification of
the shape of the trench cross-section as trapezoid in the simulations.
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Fig. 3. (a) Experimentally obtained THz transmission of the metamaterials obtained from
the raw data (dots) and zero-padded data (lines) both with (red dots and dashed line) and
without (black dots and dashed line) the etched trench structure with a depth of 3.4 µm (b)
THz transmission of the metamaterials with (red dashed line) and without (black solid line)
the etched trench structure with a depth of 3.4 µm in the FEM simulation. (c) The resonant
frequency of the metamaterials as a function of trench depth in the experiment (black boxes)
and simulation (red boxes). All lines are guides to the eye.

To investigate the effect of the etched trenches on device sensitivity, we fabricated THz SRR
arrays with various etch trench depths, and spin-coated them with a well characterized dielectric
material (Shipley S1813 photoresist) [32,33]. Figures 4(a) and 4(b) show the THz transmission of
metamaterials both with and without the 3.4 µm deep trench structure, and both with and without
the deposition of a 3.5 µm thick dielectric layer. We chose an etch depth of 3.4 µm since we found
it was not possible to increase the dielectric film thickness systematically by spin coating when
this was made any larger owing to planarity issues arising from deeper trenches. A dielectric
thickness (hS1813) of 3.5 µm was chosen as the sensitivity enhancement around this thickness
is pertinent to the development of biosensors using THz metamaterials, since this represents a
typical size for many microorganisms such as fungi, yeast and bacteria which lie the range of
1–4 µm, all of which have previously been explored with THz metamaterial sensing [1,23]. The
size of the resonant frequency shift obtained by coating with a dielectric layer increased by a
factor of ∼ two upon etching, from 40GHz± 1.2GHz to 86GHz± 1.2GHz; simulation results
were in good agreement with our experimental results as shown in Fig. 4(c). To accurately obtain
the dielectric constant of S1813 for use in the simulation, we used the following relationship
from our previous work, which allows us to obtain the dielectric constant without the knowledge
of the film thickness once saturation conditions are reached (corresponding to film thickness
> 10 µm): As in previous work [34], we take εr = 25.06 · ∆fsat/f0 + 1, where εr is the real part
of the dielectric constant of the target materials, and ∆fsat is the saturated resonant frequency
of the metamaterials upon deposition of thick (> 15 µm) dielectric overlayers. Here, the size
of the saturated resonant frequency shift (∆f sat) can be described using the following relation:
∆fsat/f0 ≈ α(εS1813 − εair)/εeff, where α is the sensitivity coefficient determined by the device
geometry, εS1813 is the dielectric constant of S1813, and εair is the dielectric constant of air [34].
We thus obtained a dielectric constant of 2.97 for S1813 with an error of± 0.16 at 0.79 THz. In
Fig. 4(c), we plot ∆f sat as a function of the trench depth with the deposition of the thick (>15
µm) S1813 overlayer for experiment and simulation. The enhancement in the resonant frequency
shift was found to increase as the etch depth increases.
We confirmed that the degree of enhancement is not simply caused by an increase in the

resonant frequency by comparing two SRR devices without the trenches operating at 794GHz
and 904GHz, respectively. The resonant frequencies were adjusted by changing the LC gap
distance. SRR devices operating at 904GHz and at 794GHz showed a saturated resonant
frequency shift of 57GHz (±4GHz) and 53GHz (±4GHz) for deposition of thick (> 15 µm)
S1813 overlayers respectively. This represents an increase of ∼4GHz by increasing the frequency
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without introducing trenches, while the experimentally determined shift introduced by the etched
trenches was ∼42GHz (±1.2GHz). We also found that the resonant frequency shift for overlaid
thicknesses in the main region of interest (ie for h1318 < 1 µm) decreases when f 0 increases to
904GHz. Therefore, it is almost entirely the gap introduced by the etching, rather than any change
in frequency induced by etching which is responsible for the observed enhanced sensitivity.
We note that εeff also could be reduced by replacing the substrate with a silicon-on-insulator
wafer. However, the enhancement in the resonant frequency shift cannot be maximized without
introducing trenches since the interaction volume between the confined electric field in the LC
gap and the analyte on the metamaterial sensor surface is restricted owing to the presence of the
substrate. The simulation results are in good agreement with the experimental results taking into
account the size of the errors previously discussed.
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Fig. 4. (a) Experimental THz transmission of the metamaterials obtained from shown in
raw data (dots) and zero-padded data (lines) both with (red dots and lines) and without
(black dots and lines) the 3.4 µm depth trench structure, and both with (triangles and dashed
lines) and without (square dots and solid lines) the deposition of a 3.5-µm-thick dielectric
layer. (b) FEM simulation of THz transmission of the metamaterials both with (red lines)
and without (black lines) the 3.4 µm depth trench structure, and both with (dashed lines) and
without (solid lines) the deposition of the 3.5 µm thick dielectric layer. (c) The saturated
resonant frequency of the metamaterials with the deposition of the thick dielectric overlayer
(> 15 µm) as a function of the trench depth in experiment (black boxes) and simulation (red
boxes). All lines are guides to the eye.

Finally, we investigated the enhancement in device sensitivity for varying thicknesses of
dielectric material deposited onto the THz SRRs, both with and without the etched trenches
(see Figs. 5(a) and 5(b) for experiment and simulation respectively). The resonant frequency
of SRR arrays as a function of dielectric load thickness were compared under three conditions:
un-etched, with a shallow trench (0.33 µm, in the linear regime of Fig. 4(c)), and with a deep
trench (3.4 µm). The resonant frequency shift increases until it saturates at a specific thickness
since the electric field is highly confined in the gap area. Also, the frequency shift increases as
the trench depth increases owing to the decrease of the effective permittivity. From Figs. 5(a)
and 5(b), the sensitivities are obtained by dividing the initial slope of the ∆f – hS1813 curves in
the linear region (hS1813 < 1 µm) by the refractive index as shown in Fig. 5(c). The sensitivity of
the metamaterial sensor increases from 4.3 × 10−2 GHz/nm (without the etched gap) to 11.6 ×
10−2 GHz/nm (with a 3.4-µm-deep trench), which is an increase of ∼2.7 times. We compared the
sensitivity of our structure to those available in the literature by dividing the RIU sensitivity by
the analyte thickness. We found the sensitivity obtained was rather higher than that obtained
using ultrathin substrates (4.1 × 10−2 GHz/nm) [24], photonic crystal pillars (0.3 × 10−2 GHz/nm)
[35,36], double-gap structures (1.0 × 10−2 GHz/nm) [37], a Fano resonant structure on silicon
substrate (0.9 × 10−2 GHz/nm) [38] and on flexible substrate (9.0 × 10−2 GHz/nm) [39], and
a toroidal resonant structure (2.4 × 10−2 GHz/nm) [40]. We also confirmed using simulations,
that the sensitivity could potentially be further enhanced (∼to 6.6 times the unetched sensitivity,
data shown in Fig. 5(b)) by etching trench depths up to 30 µm, which may be achieved using
anisotropic etching techniques such as Inductively Coupled Plasma RIE [41]. We note that our
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approach to etching the LC gap area can be extended to insulating substrates such as quartz [42]
and sapphire [43] using this etching technique.
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Fig. 5. Resonant frequency shift as a function of hS1813 for various trench depths in the
range of (a) 0–3.4 µm in experiment and (b) 0–30 µm in the simulation. (c) Sensitivities
extracted from the initial slopes in (a) and (b) as a function of the trench depth for un-etched,
shallow etch (0.33 µm), and deep etch (3.4 µm). All lines are guides to the eye.

3. Conclusions

We have demonstrated an enhancement in sensitivity of THz metamaterials sensors to overlaid
dielectric materials by the introduction of etched trenches in the LC gap area, which reduces
the local effective dielectric permittivity. Our approach overcomes the limitations of previously
reported sensitivity enhancement methods based on the use of lower-index or ultrathin substrates.
In addition, our work contributes to further understanding of the operating mechanism of THz
metamaterials as dielectric sensors, and could be extended to other various metamaterials-based
devices such as planar metamaterials phase modulators, and metamaterials liquid sensors with
integrated fluidic channels.
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