3,656 research outputs found
Recommended from our members
Sequential Dynamic Leadership Inference Using Bayesian Monte Carlo Methods
Hierarchy and leadership interactions commonly occur in animal groups, crowds of people and in vehicle motions. Such interactions are often affected by one or more individuals who possess key domain information (e.g. final destination, environmental constraints and best routes) or pertinent traits (e.g.
better navigation, sensing and decision making capabilities) compared with the rest of the group. This paper presents a framework for the automatic identification of group structure and leadership from noisy sensory observations of tracked groups. Accordingly, a new leader-follower model is developed which assumes the dynamics of the group to be a multivariate Ornstein–Uhlenbeck process with the designated leader(s) drifting to the destination and followers reverting to the leaders’ state. Sequential Monte Carlo (SMC) approaches, and specifically the sequential Markov chain Monte Carlo (SMCMC) approach, are adopted to infer, probabilistically, the evolving leadership structure. A Rao-Blackwellisation scheme is employed such that the kinematic state of the objects in the group is inferred in closed form by Kalman filtering. Experiments show that the proposed techniques can successfully determine the leadership structures in challenging scenarios with a corresponding enhancement in tracking accuracy through direct consideration of the leadership interactions of the group
Bayesian Intent Prediction in Object Tracking Using Bridging Distributions.
In several application areas, such as human computer interaction, surveillance and defence, determining the intent of a tracked object enables systems to aid the user/operator and facilitate effective, possibly automated, decision making. In this paper, we propose a probabilistic inference approach that permits the prediction, well in advance, of the intended destination of a tracked object and its future trajectory. Within the framework introduced here, the observed partial track of the object is modeled as being part of a Markov bridge terminating at its destination, since the target path, albeit random, must end at the intended endpoint. This captures the underlying long term dependencies in the trajectory, as dictated by the object intent. By determining the likelihood of the partial track being drawn from a particular constructed bridge, the probability of each of a number of possible destinations is evaluated. These bridges can also be employed to produce refined estimates of the latent system state (e.g., object position, velocity, etc.), predict its future values (up until reaching the designated endpoint) and estimate the time of arrival. This is shown to lead to a low complexity Kalman-filter-based implementation of the inference routine, where any linear Gaussian motion model, including the destination reverting ones, can be applied. Free hand pointing gestures data collected in an instrumented vehicle and synthetic trajectories of a vessel heading toward multiple possible harbors are utilized to demonstrate the effectiveness of the proposed approach
Recommended from our members
Driver and Passenger Identification from Smartphone Data
The objective of this paper is twofold. First, it presents a brief overview of existing driver and passenger identification or recognition approaches which rely on smartphone data. This includes listing the typically available sensory measurements and highlighting a few key practical considerations for automotive settings. Second, a simple identification method that utilises the smartphone inertial measurements and, possibly, doors signal is proposed. It is based on analysing the user behaviour during entry, namely the direction of turning, and extracting relevant salient features, which are distinctive depending on the side of entry to the vehicle. This is followed by applying a suitable classifier and decision criterion. Experimental data is shown to demonstrate the usefulness and effectiveness of the introduced probabilistic, low-complexity, identification technique.Jaguar Land Rover under the Centre for Advanced Photonics
and Electronics (CAPE) agreement
Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships
Direct measurements of the turbulent air–sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind–wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source
Edoxaban: an update on the new oral direct factor Xa inhibitor.
Edoxaban is a once-daily oral anticoagulant that rapidly and selectively inhibits factor Xa in a concentration-dependent manner. This review describes the extensive clinical development program of edoxaban, including phase III studies in patients with non-valvular atrial fibrillation (NVAF) and symptomatic venous thromboembolism (VTE). The ENGAGE AF-TIMI 48 study (N = 21,105; mean CHADS2 score 2.8) compared edoxaban 60 mg once daily (high-dose regimen) and edoxaban 30 mg once daily (low-dose regimen) with dose-adjusted warfarin [international normalized ratio (INR) 2.0-3.0] and found that both regimens were non-inferior to warfarin in the prevention of stroke and systemic embolism in patients with NVAF. Both edoxaban regimens also provided significant reductions in the risk of hemorrhagic stroke, cardiovascular mortality, major bleeding and intracranial bleeding. The Hokusai-VTE study (N = 8,292) in patients with symptomatic VTE had a flexible treatment duration of 3-12 months and found that following initial heparin, edoxaban 60 mg once daily was non-inferior to dose-adjusted warfarin (INR 2.0-3.0) for the prevention of recurrent VTE, and also had a significantly lower risk of bleeding events. Both studies randomized patients at moderate-to-high risk of thromboembolic events and were further designed to simulate routine clinical practice as much as possible, with edoxaban dose reduction (halving dose) at randomisation or during the study if required, a frequently monitored and well-controlled warfarin group, a well-monitored transition period at study end and a flexible treatment duration in Hokusai-VTE. Given the phase III results obtained, once-daily edoxaban may soon be a key addition to the range of antithrombotic treatment options
Pharmacological basis and clinical evidence of dabigatran therapy
Dabigatran is an emerging oral anticoagulant which is a direct inhibitor of thrombin activity. It has been approved in the European Union and the United States of America for the prevention of thrombosis after major orthopedic surgery. It has also been approved by the American Food and Drug Administration and the European Medicines Agency for the prevention of stroke in chronic atrial fibrillation. Dabigatran provides a stable anticoagulation effect without any need to perform periodical laboratory controls. Of note, there is a growing amount of clinical evidence which shows its safety and efficacy. For these reasons, dabigatran may suppose a revolution in oral anticoagulation. However, two important limitations remain. First, it is contraindicated in patients with end-stage renal disease. Second, there is no evidence of the prevention of thrombosis in mechanical heart valves
Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)
Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species
Stretchable liquid-crystal blue-phase gels
Liquid crystalline polymers are materials of considerable scientific interest
and technological value to society [1-3]. An important subset of such materials
exhibit rubber-like elasticity; these can combine the remarkable optical
properties of liquid crystals with the favourable mechanical properties of
rubber and, further, exhibit behaviour not seen in either type of material
independently [2]. Many of their properties depend crucially on the particular
mesophase employed. Stretchable liquid crystalline polymers have previously
been demonstrated in the nematic, chiral nematic, and smectic mesophases [2,4].
Here were report the fabrication of a stretchable gel of blue phase I, which
forms a self-assembled, three-dimensional photonic crystal that may have its
optical properties manipulated by an applied strain and, further, remains
electro-optically switchable under a moderate applied voltage. We find that,
unlike its undistorted counterpart, a mechanically deformed blue phase exhibits
a Pockels electro-optic effect, which sets out new theoretical challenges and
new possibilities for low-voltage electro-optic devices.Comment: 15 pages, 6 figures, additional data and discussion included.
Supplementary videos available from F. Castles on reques
Increased RPA1 gene dosage affects genomic stability potentially contributing to 17p13.3 duplication syndrome
A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression
Theoretical Aspects of Particle Production
These lectures describe some of the latest data on particle production in
high-energy collisions and compare them with theoretical calculations and
models based on QCD. The main topics covered are: fragmentation functions and
factorization, small-x fragmentation, hadronization models, differences between
quark and gluon fragmentation, current and target fragmentation in deep
inelastic scattering, and heavy quark fragmentation.Comment: 26 pages, 27 figures. Lectures at International Summer School on
Particle Production Spanning MeV and TeV Energies, Nijmegen, The Netherlands,
August 199
- …