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Bayesian Intent Prediction in Object Tracking Using
Bridging Distributions

Bashar |. Ahmat, James K. Murphly, Patrick M. Langdon and Simon J. Godsill

Abstract—In several application areas, such as human com-  To motivate the work presented here, consider the following
puter interaction, surveillance and defence, determining the two examples:
intent of a tracked object enables systems to aid the user/operator 1) Maritime Surveillanceanalysing the route and determin-
and facilitate effective, possibly automated, decision making. . he destinati f Is i . hical
In this paper, we propose a probabilistic inference approach !ng the destination c_’ V_es_ses in _5_‘ glver1 ge_ograp ical area
that permi’[s the prediction, well in advance, of the intended IS necessary for ma|nta|n|ng maritime situational awareness
destination of a tracked object and its future trajectory. Within ~ (MSA), critical for maritime safety. This permits identification
the framework introduced here, the observed partial track of the  of potential threats, opportunities or malicious behaviour,
object is modeled as being part of a Markov bridge terminating - 5)10wing the protection of assets or other reactive actions [1],
at its destination, since the target path, albeit random, must o1 181 [9]. Gi th | t f typical it
end at the intended endpoint. This captures the underlying long 2], _[ 1, [9]. Given the complex nature 9 yp'F:a marl_lme
term dependencies in the trajectory, as dictated by the object traffic as well as the vast amounts of available information on
intent. By determining the likelihood of the partial track being tracked targets, there is a growing interest in increasing the
drawn from a particular constructed bridge, the probability of  degree of automation in MSA systems by unveiling the intent
each of a number of possible destinations is evaluated. Theseqt opiaci(s) of interest from available low level tracking data.
bridges can also be employed to produce refined estimates of the_l_h th - table d d for | lexit d reli
latent system state (e.g. object position, velocity, etc.), predict us, e're ",Q’ a nota e_ éman or' qw-comp ?X' y an ,“? -
its future values (up until reaching the designated endpoint) able destination and trajectory prEdICtlon teChnlques. Similar
and estimate the time of arrival. This is shown to lead to challenges can be found in general surveillance applications,
a low complexity Kalman-filter-based implementation of the including aerospace, with aircrafts in lieu of vessels in MSA.
inference routine, where any linear Gaussian motion model, 2) Interacting with touchscreentouchscreens are becoming

including the destination reverting ones, can be applied. Free - . . -
hand pointing gestures data collected in an instrumented vehicle an integrated part of modern vehicles due to their ability to

and synthetic trajectories of a vessel heading towards multiple Present large quantities of in-vehicle infotainment system data
possible harbours are utilised to demonstrate the effectiveness of and offering additional design flexibility through a combined

the proposed approach. display-input-feedback module [13], [14]. Using these displays
Index Terms—Bayesian inference, Kalman filtering, tracking, €ntails undertaking a free hand pointing gesture and dedicating
maritime surveillance, Human computer interactions. a considerable amount of attention that would otherwise be

available for driving. Hence, such interactions can act as a
distractor from the primary task of driving and have safety
implications [15]. The early inference of the intended on-

N several application areas such as surveillance, defersoeeen item of the free hand pointing gesture can simplify and

and human computer interaction (HCI), the trajectory adxpedite the selection task, thus improving the usability of in-
a tracked object, e.g. a vessel, jet, pedestrian or pointinghicle touchscreens by reducing distractions (see [16] for an
apparatus, is driven by its final destination. Thaspriori overview of the intent-aware display concept). For example,
knowledge of the object endpoint can not only offer vitahssuming that the endpoint prediction certainty meets a set
information on intent, unveil potential conflict or threat andriterion, the user need not touch the display surface to select
enable task facilitation strategies, but can also produce mare item, allowing mid-air selection. This can significantly
accurate tracking routines [1]-[9]. In this paper, we addressduce the effort (attention) associated with interacting with
the problem of predicting the intended destination of a trackéd-car displays as per the user study in [17].
object from a finite set of possible endpoints and the future There is a wide range of other applications that can benefit
values of its hidderstate(e.g. object position, velocity, etc.), from knowing the intent of a target of interest. For instance,
given the available noisy observations. This can be viewed apradicting the destination of a pedestrian [18], e.g. an intruder
means to assist or automate timely decision making, planniimga perimeter, intelligent robot navigation in general or in the
and resources allocation at a higher system level, compapdsence of other moving agents such as people [19]-[24], and
with a conventional sensor-level tracker. The latter typicallgdvanced driver assistance systems [25], to name a few.
focuses on inferring the current value of the latetdte X,
with several well-established algorithms [10]—[12]. A. Contributions

The main contribution of this paper is the development of
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employ any linear Gaussian motion model, includirigear through a finite number of zones. In this paper, in contrast,
Destination RevertingLDR) models, such as those detailed inve adopt continuous state space models with bridging distri-
Sections IlI-A and I1I-B, which are intrinsically driven by thebutions that do not impose any discretisation/restrictions on the
endpoint of the tracked object [16]. The bridging frameworkath the tracked object has to follow to reach its endpoint. This
introduced here capitalises on the premise that the path of tbemulation is particularly important in applications where
object, albeit random, must end at the intended destinatiatiscretisation of the spatial area is burdensome, e.g. tracking
Since the endpoint is unknowa priori, a bridge for each objects in 3D as with free hand pointing gestures or surveying
possible destination is constructed. This encapsulates the lentarge geographical area for MSA; it can also easily handle
term dependencies in the object trajectory due to premeditatesisy asynchronous measurements. The method proposed here
actions guided by intent. By determining the likelihood of thprovides a simple, effective solution to the intent prediction
observed partial track being drawn from a particular bridgeroblem compared with those in [6], [7]; it also combines the
the probability of each nominal endpoint, along with a refinedestination prediction and tracking operations.
estimate of the current object stal® and its future values Intent inference is often treated within the context of anom-
X, (for s > t), can be evaluated. This is accomplished via aly detection, e.g. [2], [4], [6]-[9], [29]. A common approach
Kalman-filter-based inference, amenable to parallelisation. is to categorise each trajectory of the tracked object(s) as
Notably, the proposed approach in this paper does rgther normal or anomalous, i.e. classification techniques. This
impose prior knowledge of the arrival timg at the intended follows defining (or learning from recorded data)pattern
destinationD. A conservatively chosen prior distribution ofof life that constitutes ordinary behaviour. Deviations from
the possible times of arrival for each destination sufficethis are considered to indicate an anomaly, assuming adequate
This allows the introduction of a technique to sequentiallgata association algorithms [2], [8]. For example, a support
estimate the posterior distributigT'| D) of the arrival time vector machine (SVM) based method is introduced in [5] to
T from the available partial trajectory of the tracked objectlassify deviant trajectories. A model-based technique, using a
Within the formulation adopted here, possible destinatiomsned hidden Markov model, is utilised in [9] to characterise a
may also be specified as (Gaussian) distributions, with a megattern of lifeand predict the future position of a conforming
and covariance, in order to model endpoints with a non-zetarget. Similarly, in [6] and related work, ‘tracklets’, which are
spatial extent; point destinations can be modelled by settiagb-patterns comprising a trajectory, are defined as a means
the covariance to zero. Finally, we conduct simulations to capture a semantic interpretation of complex patterns such
illustrate the inference capability of the bridging-distributionas anomaly or intent. In this paper, a probabilistic model-
based predictors using real pointing data (HCI) and synthebased formulation is proposed to tackle the intent inference

vessel tracks (MSA). problem rather than anomaly detection, with the posterior
probabilities of various intents sequentially calculated using
B. Related Work bridging distributions.

One of the first technigues to incorporate predictive inform- The benefits of predicting the intended item on a Graphical
ation on the target endpoint to improve the accuracy of théser Interface (GUI) early in a pointing task are widely
tracking results was proposed in [1] and motivated variouscognised in HCI, e.g. [30]-[33]. Most existing algorithms
subsequent studies such as [3]. It assumes prior knowledgdamius on pointing via a mechanical device, such as a mouse,
the time of arrival at destination to devise a destination-awane a computer screen in a 2D set-up. In [16], 2D-based
tracker. In this paper, the objective is to predict the intendguledictors are shown to be unsuitable for pointing tasks in
destination of the tracked object, using motion models thaD. For instance, the linear-regression methods in [31] and
are also inherently dependent on the endpoint. This can [B2] assume that the the destination is always located along
inferred using a multiple Kalman-filters-based solution, evahe path followed by the pointing object, which is rarely
without imposing knowledge off". It is noted that unlike true in free hand pointing gestures. Endpoint inference based
the widely used interacting multiple models (IMM) [11],on modelling the pointing movements as a linear destination
[26] and generalised pseudo-Bayesian [27] approaches feverting process is considered in [16]. Compared to [16], the
manoeuvering targets, here we construct a bridge model peidging-based-solution developed here is more general and
nominal destination and no interaction or switching amormore robust to variability in the target behaviour, leading to
models is applied. This is based on the premise that the traclsegberior prediction results.
object intent is set well in advance of reaching its endpoint, Finally, data driven prediction/classification techniques,
leading to simple and low complexity algorithms. such as in [18]-[23], [25], [33], rely on a dynamical model

More recently, destination-aware trackers that facilitate imnd/or a representation of the environment (e.g. including
ference of the object stat&, followed by an additional physical constraints) learnt from recorded tracks/behaviour.
mechanism to determine its endpoint are presented in [5]-[Fpr example, predictors based on inverse-optimal control are
succeeding the work in [28]. The object trajectory is modelldgdtroduced in [18], [33]. Such methods often entail a high
as a discrete stochastic reciprocal or context-free gramneamputational cost and necessitates substantial parameters
process, which can be regarded as non-causal generalisatteaising from complete data sets (not always available). In this
of Markov processes. The state space is discretised witlmiaper, as is common in tracking applications [10]-[12], known
predefined regions, for example, the spatial dimensions atgamical and sensor models (e.g. due to practical physical
divided into finite grids. The target can accordingly padsnitations), albeit with unknown parameters, are presumed,
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i.e. a state-space-modelling approach. The solution proposed I1l. SYSTEM MODELS

here requires minimal training, is amenable to parallelisationA i 4G . i del for th luti fth
and is computationally efficient, yet delivers a competitive Inear and aussian motion mode’ for the evolution ot the

physical stateX; of the tracked object is assumed throughout
performance. . ; . :
this paper. Whilst the system governing the target dynamics
_ does not change over time, it does depend on the object
C. Paper Outline eventually reaching its destinatioB € D. Conditioned on

The remainder of this paper is organised as follows. fOWing the endpoinD = d, this leads to a linear time-
Section 11, we formulate the tackled problem and define tHavariant Gaussian system such that the relgt|onsh|p between
objectives. A range of possible motion models are outlined A€ System state at timgsand? + i can be written as
Sect?on [l and the prior qf the state v_alu_e at destinatioq, i_.e. Xepn = F(h,d)X; + M(h,d) + & (3)

X, is addressed. In Section 1V, the bridging-based-prediction )

is introduced and pseudo-code for the proposed algorith¥gh e¢ ~ N (0, Q(h,d)). The matricest” and @ as well as

is provided_ The performance of the proposed techniquesth@ V(.ECtor]\/[, which tOgether qeﬂne the St?.te transition from
evaluated in Section V using real free hand pointing gestupge time to another, are functions of the time stepnd the

data and synthetic vessel tracks. Finally, conclusions are draf@tinationd.
in Section VI. The nt* observationy,, is modelled as a linear function of

the timet,, state perturbed by additive Gaussian noise,

II. PROBLEM STATEMENT yn = GXy, + vy 4)

LetD = {d:d=1,..,N} be the set ofV nominal des- wherev,, ~ N (0,V,). No assumption is made about the
tinations, e.g. harbours where a vessel can dock or selectd#igervation arrival times,, and irregular, asynchronous ob-
icons displayed on a touchscreen. The time instant the track&vations can naturally be incorporated within the framework
object reaches tha priori unknown intended destinatiop ~Presented here. Based on (3) and (4), a Kalman filter can
is denoted byZ’. Whilst no assumptions are made about thige utilised to calculate both the posterior distribution of the
layout of D, each endpoint is modelled as an extended regidﬁ?em state and the observation likelihood for the current set
e.g. GUI icons or harbour, rather than a single point as fif measurementg,., [34], conditioned on knowingi. The
[16]. Hence, thei®" destination is defined by the (Gaussiangomputatlonally efficient Kalman filter is particularly desirable
distributiond «~ A (aq, $4); see Section llI-C. since running, concurrently, multiple Kalman filters, in real-

The objective here is to dynamically determine the probali€: IS plausible, even in settings where limited computing

ility of each possible endpoint being the intended destinatioR@Wer is available, such as on a vehicle touchscreen or a
portable battery-powered system.

P(tn) ={p(D=d|y1:n) :d=1,2,...,N} 1) To condition on the destination, the inference framework
requires that the transition density of such models can be

or observations of the tracked object at the time instant 7. tc_alcu_lat:zd tktmth tfrom onz fobser;]/atlon to tthi next t(l.e.t.from
For example, as in [16], we havg. — [#1, @, %] is the ime instantt,,_; to ¢,,) and from the current observation time

Cartesian coordinates of the pointing fingertatas captured to thg ar_r val tm:_e at thi_lntendzdlendporlplt ("]?' fram tot |
by the pointing-gesture tracking device. Each observation%' ontinuous-time motion Models are therelore a hatura

wherey., = {y1,%2, ...,y } is the available partial trajectory

assumed to be derived from a true, but unknown, underlyil’f oice, where th? tracked °*?jeCt, dynamics is represented
target stateX; _ at timet,,, which can include position, velocity by a continuous-time stochastic differential equation (SDE).

and higher order kinematics. GiveR(,,), the Maximuma This SDE can be integrated to obtain a transition density
Posteriori (MAP) estimate ' " over any time interval. For Gaussian linear time invariant

A (LTI) models, this integration is analytically tractable, giving
D(t,) = argmax p(D =d | yi.n), (2) transition functions of the form in (3). This class of models
d=1,2,....N includes many widely used ones, e.g. (near) constant velocity

is an intuitive approach to determine the intended endpoif@V) and (near) constant acceleration (CA) models, as well
D following the arrival of the new observatioy,. It should as the linear destination reverting models given below.
be noted that other decision criteria can be adopted, althoughThe early work in [16] employs LDR models in a forward
this is not treated here. Therefore, the proposed probabilistense, without using the destination state as conditioning
endpoint prediction relies on a belief-based inference, ii@formation. In this paper, by contrast, a prior probability
calculatingP(t,,) in (1), followed by a classifier, e.g. (2).  distribution on the object state at its destination is used dir-

As well as establishind at timet,,, a refined estimate of ectly as conditioning information in the inference procedure.
the system latent stat&,; and its predicted future values,This is achieved by using bridging distributions to introduce
i.e. X;+ for t* > t,, and time of arrival atD are sought. the longer term dependencies in the target trajectory (see
A successful prediction at,, of the tracked object’s final Section 1lI-C). A similar idea is explored in the preliminary
destination and/or its future trajectory can reveal its intentiostudy in [35] using the CV model, in which the endpoint
alerting an operatdf’—t,, in advance of any potential conflictinformation does not feature in the motion model. That work
or reducing the pointing time by — ¢,, in an HCI context. also specifies each destination as a single point (rather than
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Position, no bridging Position, w/bridging  Velocity, w/bridging  gtronger the further the target is from its destination. This
15 15 4 produces the predictive position and velocity dynamics of the
10 * 10 * form displayed in the second row of Figure 1.
BM 5 5 Ow The stateX; of the mean reverting diffusion model consists
0 0 of only the target position in each of thespatial dimensions.
55 : 70 % s 0 2o e T For endpointd (located at position,), the SDE is given by
15 15 4 dX; = A (pg — Xi) dt + odwy, (5)
MRDW § o2 whereA is a diagonal matrix with diagonal elements; }3_,
5 5 — . S . ; .
0 that set the reversion coefficient in each dimension. The diag-
0 0 onal matrixo specifies the standard deviation of the dynamic
0 5 TR 5 10 o 5 10 noise andw; is a standard (unit variancej-dimensional
15 15 4 Wiener process. The diagonal structurecofmplies that the
10 % 10 * noise is independent in each spatial dimension, which is a
oV 5 5 common assumption in tracking [10]. However, this can be
0 0 0 relaxed as shown in equation (7) below.
5 5 " As in [16], by integrating (5) fromt to ¢ + h, we obtain a
0 5 100 5 10 0 5 10 state transition function in the form of equation (3) with
15 15 4 —Ah
10 ¥ 10 * Fyro(h,d) = e )
ERV 5 5 Mwro(h,d) = (I, — e *")pa, (6)
0
2 . . Quro(h,d) = 5 [1. — V] A0
0 5 10 0 5 10 0 5 10

wherel, is the s x s identity matrix. For non-diagonat, the

Figure 1:Predictive distribution calculated @t = 0 of position (i, /)" element ofQuro is given by

without bridging (first column), predictive position with bridging

(second column), and predictive velocity with bridging (third column) (o0')i
for the BM, MRD, CV and ERV models in 1D. The-axis shows Qmrpjj = ——— [1 — e*(A“JFAJ’J')h} ) )
time ¢ and y-axis depicts position/velocity. The destination (black Aii 4+ Ajj

star), is located at position 10 at tinfe= 10. Grey shading shows \ynere »/ is the transpose of the vector/matrix A special
one standard deviation, white line depicts the mean (except for B

and MRD velocity, for which the black line shows the implied meaf{25€ of the MRD model o.ccurs. when= 0, (with 0, .be|ng
of velocity only). Parameters for the models are= 1 (all models), thes x s matrix of zeros), in which case the dynamics of the
A= 0.3 (MRD), n = 0.1, p = 0.5 (ERV). target position follow a Brownian motion (BM). In this case,

the F', M and @ matrices in (3) become

a prior distribution) and applies a two step modified Kalman Fam(h, d) = hls,
filter to infer D, which is more computationally demanding Mgwm(h,d) = 0sx1, 8
and obscure compared with the solution presented here. Qem(h, d) = ho?,

In the remainder of this section, we describe the LDR

models of [16] for completion, other related motion process¥41€r€0sx1 is ans x 1 column vector of zeros.

and the prior onXr. The predictive position and velocity |f measurements,, are direct noisy observations of the

distributions of selected motion models, with and without tH&acked object position, the observation maifixin equation

use of bridging (i.e. conditioning oX;) are depicted in (4) is simply the identity matrix(x = I.

Figure 1 in the one dimensional case. The figure demonstrates

the substantial effect of introducing the bridging assumptiofs Equilibrium Reverting Velocity (ERV)

on the prediction results of various motion models. It clearly ) ) )

shows how these distributions more accurately model theln_the_ ER_V model, mtrod_uc_ed in [16] for_ "ac"'”g and

predicted state at the endpoint. It is worth noting that arglpstmatlon inference for pointing tasks on in-car displays,

continuous-time LTI model could be used directly within th1€ System statex; attimes is a2s x 1 vector, arranged

proposed inference framework, as long as the system can@5d®1s -+ s: 1, .-, &]', wherez; is the position in spatial

expressed by equations (3) and (4). dlmensmm, andz; is the veIQC|ty in that d!men5|on. Under
this model, the SDE governing the evolution of the tracked
object state is

A. Mean Reverting Diffusion (MRD) 4%, = A X,)d p ©)
t = A (g — X¢) dt + odwy,

The position of the tracked object for the Mean Reverting
Diffusion (MRD) model follows an Ornstein-Uhlenbeck prowhere the meamq = [p/;,,0,,,]" contains the positiop, of
cess [36], with its mean being the destination. The intuitioestinationd; w; is a standard dimensional Wiener process
behind MRD is that a target heading towards a particulandB = [0, o] is @2s x s matrix that controls the noise which
endpoint will revert towards it. The reversion strength iaffects the velocity components of the process (modelling
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random forces acting on the target). In this case;an be linear Gaussian structure of the system, the following Gaussian
given by thes x s Cholesky decomposition of the velocityprior on the object state upon arrival at destination at tifne
noise covariance:, such thaty = oo¢’. As with the MRD

model, a common choice is a diagonal i.e. independent p(Xr | D =d) =N (Xria4,%a), (12)
noise in each spatial dimension. The matixs given by is assumetl This effectively models the destination as el-
0, —I, lipsoidal, since the iso-probability surfaces of the Gaussian
= [77 P ] 5 distribution are elliptical. The mean vectay specifies the

location/centre of the destination, for example; = pqg

wherep is ans x s diagonal matrix of the drag coefficientsior the MRD model anday = ug from equation (9) for
(can be assumed to be the same across all dimensions) aRle ERV model. Whereas;, is a covariance matrix of the
is as x s diagonal matrix of the mean reversion strengths igppropriate dimension, which sets the extent and orientation
each spatial dimension. of the endpoint. In the case of the ERV model, defining the

A physical interpretation of the ERV model is that thejestination also entails specifying a distribution of the tracked
destination? exerts an attractive force on the tracked object, @hject velocity at the destination. If this is unknown, a large
strength proportional to the distance separating them. This Ggfbr variance can be used to model this uncertainty.
be viewed as a linear spring of zero natural length connecting
the target to its endpoint. A drag term proportional to thF\/
velocity of the target is also included, allowing the velocity
profile of the tracked object (e.g. pointing-finger-tip in a free For motion models of the form in equation (3), and con-
hand pointing gesture) to be correctly modelled; see Figureditioning on a given destinatiod € D as well as arrival
(fourth row) and [16]. time T, the posterior of the system state can be expressed

Integrating the SDE in (9) fromto ¢+ / allows the system bY p(Xi, | 1., T, D = d) and the observation likelihood

evolution to be expressed in the form in equation (3) with 1S P(¥1: | T, D = d) after n measurements. The graphical
structure of this system is depicted in Figure 2. The intended

INTENT INFERENCEUSING BRIDGING DISTRIBUTIONS

Ferv(h,d) = e destinationD influences the state at all times via the reversion
Mery(h, d) = (Ins — e~ M) g, (10) built into the LDR motion models (for non-destination revert-
t+h ing ones, the endpoint only affects the final state). Nonetheless,
Qerv(h,d) = / e~ Alth=0) 5ol o= AR =) gy the inclusion of the prior onX in (12) changes the system
t

dynamics, even for the MRD and ERV models. Assuming that
The covariance matri®erv(h, d) can be calculated by Matrix the destination is known, the posterior distribution of the state
Fraction Decomposition [37] where changes from a random walk to a bridging distribution. This
Qerv(h, d) = JK is clearly visible in Figure 1, especially in terms of producing
ERVATD, ’ consistent and meaningful predictions. Consequently, all Gaus-
sian linear models, including the non-destination reverting
S| _ —A oo’ O2s hose dynamic models are not intrinsically dependent
Kl =2 (|, o h ol ones, whose dy y depend
2s 2s on an endpoint, e.g. BM and CV, can be used for destination
A special case of the ERV model occurs wheandp are  prediction within the proposed formulation.
both zero. In this scenario, the model reduces to the widely

used (near) constant velocity model with A. Filtering and Likelihood Calculation

Fov(h,d) = {Is hfs] : An elegant way to filter forX; with a destination prior
0s 1 is to extend the latent system state to incorpordte thus,
Mecy(h,d) = 025x1, (11) it becomesZ, = [X; X/|'. Filtering is then carried out
B3 s B2 for p(Z;, | vim, D = d,T), permitting the calculation of
Qcv(h,d) = [aa/% 79 /2] the observation likelihood(y1., | D = d,T). The key
00’5 od'h to developing this filter is to calculate the transition density

If observationsy,, are direct noisy measurements of the targe{Zt+n | Z¢, D = d,T), given by
position, the observation matri¥ in equation (4) is given by (Zoson | Ze,D = d,T) = p(Xr | Xpan, X7, D = d, T)

G=1[I, 0.
X p(Xegn | X, X7, D =d,T)

:P(Xt+h | Xi, X7, D =d, T)~
C. State Value Prior at Destination (13)

Knowing the intended destinatiol of a tracked object | o
. . . . ~Note that thisartificial prior encourages the sta?ér to be close to one of

gives information about the system state at some future U desired destination as shown in Figure 1. Whilst this can be viewed as

T'. This can be modelled by a prior probability distribution foronstraining the system terminal state conditioned on a known endpoint, it is
i i i in#pgeneral inconsistent with the underlying dynamical model in (3) since (3)

Xr correqundmg to the geometry of the destination, smélfn§ les thatp(X; 1D = d) = [ p(X1,|D = dyp(Xr | Xe,. D = dyd,

most endpomts are extended regions (e'g' GUI buttons further details on this construct, see the last part of Section IV-A, below

harbours), rather than single points. In order to maintain tlaguation (21).
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andm; ar x 1 vector such that

Ht = [CtQ}leha CtFm/Q;p_l]7
my = Cy(Qy ' My, — FLQ ' M,).

This allows the state transition with respect4pto be written
as a linear Gaussian transition of the form

F(ty-t,.1,D)
M(t,-t,,D)

Zt+h = RtZt + fnt + Yt (18)
Yt ~ N(O, Ut) .

where

Figure 2:The graphical structure of the system afteobservations. R, = H, My = my U, = Ce Oy (19)

The destination plays a similar role to the prior distributionXf in Pr|’ 0y |’ 0, O’

addition to affecting the state transition function. Heavy lines indicate ) .

a deterministic relationship (early transition matrices are not show@nd Pr = [0, I.]. With respect to this extended system, the
k-dimensional observation vector at each observation time is

given by

Yn = GZ;, + vy (20)
This follows from Pr(Xr = z | Xiypn, X7, D =d,T) = 1,
for any value of X, due to the fact that the stafér is in-
cluded in the conditioning information vi&;. The distribution
p(Xesn | Xi, X7, D = d,T) is given by
P | X X0D = 4 ) oxpXr | Xow D= 4,7) - gt Condoned Pl & Decamposion an
e | X D=, 1) =0 (b Zns S} = KF( Zg S1s R, U, G)
otation: ny Ln,y &n f — Yn,y bn—1, Zan—1 ty Ut
= X Fo Xon + M, Q. Xion Fn Xy + My, o /) P on A
N (X3 Bp X + M, Qu) N (Xens EnXo + My, Qn) Input: Observation y,; previous posterior state mean
(14) estimaté Z,,_; previous posterior state covariafce,,_;

where theF, M and Q matrices are taken from the motion State transition matrix?; and covariancé/; from equation

with G = [G, Okx,] and whereG and v, are as those in
equation(4).

models in Section III, with (18); observation matrixs from equation (20)
Predict': )
E,=F(T—-t—h,D) Fn, = F(h,D), Zpin-1 = ReZp_1 + 1y
M,=M(T—-t—h,D) My, = M(h, D), (15) Y1 = ReXn 1Ry 4 Uy
Q.= Q(T —t —h,D) Qn = Q(h, D). PED Calculation: } }
én =N (Z/n§ GZn|nfla Gzn\nflG/ + Vn)

This comes from the system structure in Figure 2, and the facicgrrect:
that for the continuous-time integrable models used here, the p _ En|n71é/(ézn\nflé/ + V)t
state transition density can be calculated over any time period. g 7 et + K (yn — Gz 1)

The following Gaussian identity = (I = KG)Xyn1 .
Output: PED ¢,, = p(yn \Aylm,l,D = d,T); posterior
N (5 1, 81) N (p2; L, Ba) = 2N (2304, %4), (16)  mean of state at time,, Z,; posterior state covariance
. - . - . >
simplifies the state transition density in equation (14) where:"»—1* . , . .
P y d (14) t For first observationy,, skip predict step and use prior

L is a matrix of appropriate size, is a hormalizing constant , , )

that does not depend an and mean and covar|aqce_f<ﬂt_1 from equatpn (22) in place. of
. Zpin—1 and¥,,,_; in likelihood calculation and correction
.= (2t +Ls'n) steps.

fre = (37 1 + L'55 o)

This leads to
Equations (18) and (20) form a standard linear Gaussian

p(Xign | Xo, X7, T, D = d) = N (Xpsnice, C) system, albeit with a degenerate state transition covariance
matrix. Thus, a standard Kalman filter can be applied to
calculate the conditioned posterior filtering distribution of
Cy = (Q, ' + FLQ ' Fy) Y, the state and the conditioned prediction error decomposition
et = Cy [Q;l(FhXt + M) + FLQ; Y (Xr - M,)], @7 (PED), P(Yn | Y1:n-1,D = d,T). This Iatt_er i_s sr_]own in
—H,Z, +m, Sections .IV—C to IV-E to pe Key to destlna.tlon mfergnce,
’ because it allows the destination and end-time conditioned
with, for anr-dimensional state vectot;, H; ar x 2r matrix observation likelihood of the partially observed track to be

where
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calculated recursively as: filter in the preceding section (see Algorithm 1) over all
ossible arrival times according to
pWin | D=d,T) =p(yn | y1:n-1,D = d,T) P J
“ras D= 1) pln D)= [ o |T,D)p(T | DT, (@3
TeT

The algorithm for a single iteration of the Kalman filter is . . o . .
given in Algorithm 1. It requires the prioZ;, = [X/., X} wherep(T | D) is the a prior distribution of arrival times for

at the first observation time. Whilst the prior ot is the destinationD and 7 is the time interval of possible arrival

standard prior on the initial state, the prior &y is derived timesT' (D = d is here replaced by for notational brevity).

from the destination as described in Section IlI-C, and can be" e>:§1mple, .arr;vajlfs might beTex%ect_eg{ ltmn;ormly within
neatly incorporated into the Kalman filter. It should be noted” c "¢ periodt,, ty], giving p(T' | D) = U(ta, ts)-

that technically the prior onXy is linked to X, according ) )

to the transition density(Xr|X;,,D = d,T). However, in N mMost casesp(y.., | T, D) after n observations is a
our formulation, we introduce aartificial prior distribution on nontrivial function of T' resulting in intractable integrals. A

Xy that guides the trajectory towards a particular destinatiGlyMerical approximation to the integral in equation (23) can
D = d at timeT. This leads to be obtained via numerical quadrature, which is viable since the

arrival time is a one-dimensional quantity. The approximation
p(Zy, | T,D=d) =N ([))?1] : {“1] ; El gTD ., (21) requires multiple evaluations of the arrival-time-conditioned-
T] L% rood observation-likelihood (for various arrival timeg) for each
where 111 and X; specify the initial prior onX,,, thereby of the N nominal endpoints. Therefore, in time-sensitive
p(Xy, | D = d) = N(Xy,;01,21); ag and X, come applications, it is likely that only a few quadrature points
from the endpoint prior in equation (12). In this form, wecan be used.
assume thatXr and X;, are independeng priori, which
is approximately true in many of the dynamical models we \whilst adaptive quadrature schemes might seem appealing
consider. Nonetheless, if we wished to capture the prifdr their efficiency and accuracy, they are not easily applied to
dependence structure betwe¥p andX;,, because of a more this problem. For a given arrival time, only a single iteration

"informative” dynamical model, we could instead use of the Kalman filter as in Algorithm 1 need be run (per
X, wl] [S0 0, destinationd € ), following the arrival of a new observation.
p(Z, | T,D =d) x N QX;} ; Ld] : [OT EdD Thus, if a fixed quadrature is utilised withquadrature points,

Nq Kalman filter iterations of the form in Algorithm 1 are

required per observation arrival. For adaptive quadrature, it

Although incorporation of (22) is straightforward for the lineawill, in general, be necessary to calculate the observation

Gaussian models studied in this paper, it is not explored heliselihood for a different set of arrival times at each step. This,
An alternative interpretation of our construct as per equatiépwever, requires the Kalman filter be re-run from scratch for

(12) is to consider the possible destinations:atas pseudo- all n available observations, imposingVq iterations. Hence,

observationsrather than prior means, whete= 1,2,...,N. Simple fixed grid quadrature schemes are employed here. A

In this case, we write an observation density for the pseudgalman filter iteration as in Algorithm 1 is not computationally

observationjr as p(jr = aq|X7) = N(aq; X7,%q) and iptensive and each of tr_\Hq iterations, req.uireq per observa-

proceed to compute the likelihoog&yy.. |y = aq, D = d, T) tion, can be performed in parallel. For arrival times before the

via the Kalman filter. These likelihood functions then serve gHrent observation timé&; < ¢,,, the arrival-time-conditioned

determine which pseudo-observation is most consistent wRRservation likelihood, i.ep(y1.n | T =T; < t,, D), is taken

the data seen, i.@u.,,. The calculations are exactly the samé® have zero values.

as under the prior modelling formulation adopted here; for

further discussion of this point, see [38]. Here, we apply a Simpson’s rule quadrature scheme, with an

odd numberg of evenly spaced quadrature points,, ..., Ty,.

This approximates the integral in equation (23) by

xp(Xr|X,,D,T). (22)

B. Unknown Arrival Times p(yim | D) ~ ?)T(qq —Tll) {p(ym | T =Ty, D)

So far, it has been assumed that the arrival time at the (4—1)/2
destinationT’ is known a priori. Often, this is not a realistic +p(yin | T=T4,D)+4 Z p(Y1n | T =T, D)
assumption and we are interested in the probability of the P
tracked object arriving at a destination amy time within (q—1)/2—1
some time interval. In this case, the unknown arrival tife +2 > plyn | T = T2i+1’D)} (24)
is treated as a random variable, which must be integrated over =1

in order to infer the destination of the tracked object.  qiher numerical integration schemes such as Gaussian quad-
The observation likelihood with unknown arrival time isature can be employed. It may also be desirable to use unequal

given byp(y1., | D). This can be calculated by integrating thgntervals between quadrature points, e.g. if the distribution of
arrival-time-conditioned likelihood calculated by the Kalmagyriyal times is heavily peaked in particular regions.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XXXX XXXX 8

C. Destination Inference Algorithm 2 Destination Inference
Input: Observationsy;.y _ _
Initialize: Set L™ = 1 and setZ{*", % to priors
from equation (21) forall e D, i =1,...,q
for observations: =1, ..., N do
p(D =d| y1:n) X p(Y1:n | D = d)p(D = d). (25) for destinationd € D do
for quadrature point € 1,...,q do
Calculate R\*", U{*") in equation (18) for obser-
vation timet,,, destinationd and arrival timeT;
Run Kalman filter iteration:
{E%d,i), ZAr(Ld,i)’ Egld,i)} _

The posterior distribution of the nominal destinations, i.e.
p(D =d | y1.n),d € D in equation (1), at the time instant
can be expressed via Bayes’ theorem by

The discrete probability distributiop(D = d) defines a
prior over all possible destinations; it is independent of the
current track and can be obtained from contextual information,
historical data, etc. Alternatively, a non-informative prior can
be used wheré’r(D =d) = 1/N for all d € D.

Algorithm 2 shows how the posterior distribution over _ KF(yn, 220, S0 RO UMD, G)
destinationg (D = d | y1.,) in (1) can be inferred sequentially {ﬁﬁﬁ”’ is the PED for a known arrival time, i.e.
given a series of observations.,. It begins by initializing é%d’l) =pWn | Y1:n—1,D =d, T =T;)}
the running likelihood estimaté " for eachd € D and the Update likelihood:L{"" = L) x ¢\
current posterior state meaﬁéd’i) as well as covariancEgd’i) end for
for each destinatiom and quadrature point (corresponding Calculate likelihood approximation:
to arrival time T;) to their priors. After each observation, P = quac(L%d’l),Lﬁld’Q),...,L%d’(”)
the Kalman filter iteration in Algorithm 1 is utilised to cal- {P,(Ld) ~ p(y1.n | D = d); quad is quadrature functidn

culate the one step arrival-time-conditioned-observation PED end for
o0 — p(Yn | Yy1:n_1,T = T;, D = d) for each destination for destinationd 6@) do

d € D and quadrature point This is then used to calculate Ug = %

the overall arrival-time-conditioned observation likelihood end for dep A=) n

L) = p(yy, | T =T, D = d) Destination posterior after »™ observation:
" . D D=d Y1:n) = Uq

:p(yn | y1:n71,T = Tsz = d)p(ylznfl | T = TzaD = d) end fo(r ‘ ! )

= (&) 5 (1) (26)

The Kalman iteration also determines the corresponding
dated posterior state meafi® and covarianc&{®”, which
are necessary for the next steps.

After running a Kalman iteration for all quadrature points, p(T' | D = d,y1.t) x p(y1:¢ | T, D = d)p(T' | D = d). (29)

the quadrature function (and arrival time prior) is used

Y& intended (unknown) endpoint. For a specific destination
D = d, this is given by

Bince the quadrature procedure used in Section IV-A re-

. . (d,i) .
the I_|kel!h00(_jLn calculated_at each qf these_pomts for.%uires calculation of the arrival-time-conditioned-likelihood,
destinationd in order to approximate the integral in (23). Thlﬁe plyis | T = T,,D — d), for a number of quadrature
. it - (2] - ’

gg’stisngt]iin?ibg%va“on likelihoog(y1.n | D = d) for each points T;, a discrete approximation of the overall posterior

can be obtained almost without additional calculations via
p(y1m | D = d) ~ quad L\®Y, L4 Ldoy  (27)

n

q
T|D=d,y14) = w0y, 30
For a finite se, the probability of any given destination as in P(T| viz) ; (T} (30)

(1) and (2) can be determined by evaluating the expression i . . _ o .
equation (25) for eachl € D, followed by the normalisation W.ﬂefe‘s{.m is a Dirac delta Iocated. at;. T.h's is a weighted
distribution over the quadrature points with
Zp(ylz(n | DlDdlp(f (Ddl - (28) Py | T=T,D = dp(T; | D = d)
jGDp Yi:n J1)P J 7 Zg:lp(yl:t ‘ T — T“D _ d)p(j—,z | D — d)

Wh'c.h ensures that the total probab|l|ty_0\_/er all pgss'm?hese weights are normalized evaluations of the expression
destinations sums to 1. In Algorithm 2, this is approximategf equation (29), calculated at ea€h Normalization ensures

(due to numerical quadrature) by, ~ p(D = d | yin). ipat the approximate posterior distribution in (30) is a valid
For a fixed set of quadrature points, this estimated poster bbability distribution that integrates to 1

can be updated sequentially after ea_ch obser_vati_on, makin itI'he posterior distribution of the arrival time aty destina-
tractable for a large numbers of possible destinations4nd tion can be calculated without significant further calculations

quadrature pointsgj. by integrating over all endpoints (sin@eis a discrete set) as

p(D =d | yl:n) =

D. Arrival Time Inference P(T | y1a) =Y _p(T, D =d | y1)

In addition to inferring the intended destinatidh of the deb
tracked object, it is also possible to infer a posterior distri- < »_p(yi:¢ | T.D =d)p(T' | D = d)p(D =d).  (31)
bution of the time at which the target is expected to reach deD
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Since the conditioned likelihoog(y1., | T,D = d) is mixture with the same component weights, as for state
determined for eachi € D and quadrature poini’ = 7;, estimate at the current time instantin (33) such that
i1 =1,2,...,q, the distribution in (31) can be approximated by

q
q (X | Y1) = Zzui,d/\/ (Xt*§PtZt(flf;):Ptz,(jﬁL)Pg) -
(T | yie) = Y vidgr,y, i=1 deb
; {T:} 34
with the weights defined by The inference algorithms for the posteriors of the destination,
S uen Pyt | Ti, D = d)p(T; | D = d)p(D = d) arrival time, and current and future state of the tracked
c : 2 - 3 - -

v; = . Object can be readily parallelised, with calculations for each

Y1 Xaep P | T, D= d)p(Ti | D = d)p(D = d) quadrature point and/or nominal destination able to be run
This relies on the assumption that the set of arrival timargely independently on an independent processor. Only the
guadrature points are the same for each destinatieriD. weight normalization step as in e.g. (33) requires results from

all calculations to be available, fitting naturally into e.g. a map-
_ . reduce programming paradigm for parallel implementation.

E. State Inference and Trajectory Prediction

Estimating the current state of the tracked object (e.g. V. RESULTS
position) and predicting its future state can also be readily
preformed within the framework presented. The posteri
estimate of the target stapéX;, | y1.¢) is given by integrating
over all possible destinations and arrival times, i.e.

In this section, we evaluate the performance of the proposed
%rridging—distributions-based intent inference approach in two
application areas, namely HChnd maritime surveillande
Maximising the likelihood functiorf[j:lp(y{:T | D =d,Q)

_ _ for a sample ofJ typical trajectories (constituting the training
yit) _/ {ZP(X“ | Y10, T, D = d) set) is the criterion adopted below to set the motion model
parameters? . For example, for the MRD and ERV models,

xp(T | D =d)p(D=d)|dl. (32) we haveQ? = {A, A,o}. The learnt (fixed) values are then

applied to all of the tested out-of-sample trajectories. This

The estimated state at the time instaptconditioned on the parameter estimation procedure is suitable for an operational

arrival timeT; and endpointl is p(X;, | y1.¢,T = T;, D = d). real-time system where parameter training is an off-line pro-

It has a Gaussian distribution with mean and variance given bgss based on historical data.

P24 and PtZﬁld’l)Pt’, respectively, whereP, = I, 0],

i.e. the components oZ\*” and £{*" in Algorithm 2 A. Intent-aware Interactive Displays

correqund!ng ,tQXt,n rather thanXr,. . In the results presented here, 50 free hand pointing gestures

The distribution in (32) can be approximated from the cat3

p(Xt,

deD

) ) S - - ““Pertaining to four participants interacting with an in-vehicle
culated arrival time and destination conditioned state estimalg§hscreen are used & 5 tracks are utilised for training).
by the Gaussian mixture

This data is collected in a system mounted to the dashboard
g i i of an instrumented car (identical to the prototype used in
P(Xe, Lyra) = Y ) uiaN (th;PtZ7(1 RIS ’Z)Pt) [16]). It consists of anl1l” Windows tablet and a gesture-

=1 deb tracker, namely the Leap Motion (LM) Controller [39]. The
where weights in the above summation are given by LM produces, in real-time, the 3D cartesian coordinates of the
pointing finger/hand, i.ey, = [&:, 9., %], at an average

Ui g = Py | T, D = d)p(T: | D = d)p(D = d) . frame rate of~ 30Hz. An experimental GUI of a circular

q . f— . —_ j—
i=1 2aen P(y1 | T, D = d)p(Ti | D = d)p(D = d) layout is displayed on the tablet screen; it l&sselectable

(33) circular icons that arez 2 cm apart. Participants are asked
The future state of the tracked object can be estimat§d part P

N . : . : q select a highlighted on-screen GUI item, giving a known
using its dynamics model, applied to each arrival time an round truth intentionD*. Nevertheless, in all experiments
destination. This is identical to the ‘predict’ step of the Kalma X ' P '

. . . : . : e predictor is unaware of the track end tirffeand the
filter in Algorithm 1 for the future time instant of interest. L ; L

, . . . .~ ““intended destination, when making decisions. To demonstrate
t* > t,. For a given arrival timel’ = T; and destination

- > . . . the possible range of times of arrival at destination, Figure
veith_ rﬁég;]ea%eilg\t/':;aﬁzéhse gg{ﬁgé ftLJJturrZSst:;[;Vl:IGau55|a,a;1 depicts the distribution of" for 4,000 recorded in-vehicle
P Y. resp Y. free hand pointing gestures aimed at selecting on-screen icons.
Zt(*d\}? = R Z(di) 4 (4D This empiricalp(T' | D) is used as the arrival time prior for all
destinations within the bridging-distribution-based predictors.

d,i d,i i d,i d,i
o) = SIS (REDY + U

) ) . 2please refer to the attached video demonstrating an intent-aware display
Each of Rgil’l), mgf’l) and Ut(*d’z) are calculated in the sameoperating in real-time on a sample of typical in-car free hand pointing gestures;

i ; ; alternatively, follow the link:https://youtu.be/lg4Xolpgbuc

way as ki, .mt and Uy in .equatlon. (19) fpr a tlme*Steb’ 3Please refer to the attached videos demonstrating the destination and track
correspondlng to the requ"ed predlctlon time, he= t* —t,. prediction for a vessel approaching a coast with multiple possible ports;
The predicted distribution of the target state is a Gaussiakernatively, follow the link:https://youtu.be/ElyFh-xwMWs
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Figure 3:Distribution of the pointing timeg(7'| D), from over 4000 20 30 40 50 60 70 80 90 100
in-vehicle free hand pointing gestures to select on-screen icons. Percentage of Pointing Gesture Time (1007t /T)

Figure 4:Mean percentage of successful destination inference as a
) _ ) function of pointing time.
The inference performance is evaluated in terms of the abil-

ity of the predictor to successfully establish the intended icc g0 , : :
D via the MAP estimator in equation (2), i.e. how early in th1\° %ok )
pomtlng gesture the predictor assigns the highest probabil §

o D. The prediction success is defined Byt,) = 1 if ok |
D( ) D* and S(t,) = 0 otherwise, for observations at; |
timest,, € {t1,ta,...,T}. This is depicted in Figure 4 versus=
the percentage of completed pointing gesture (in time), |°

= 100 x ¢, /T, and averaged over all considered pointin $ 1
tasks Figure 5 shows the proportion of the total p0|nt|n<m aor 1
gesture (in time) for which the predictor correctly establishe$ 2°7 57 % 68% y
the intended destination. 10 1

In Figures 4 and 5, we assess the linear destination reverti BM-BD MRD-BD CV-BD  ERV-BD
BM and CV models with the bridging prior notated here
MRD-BD, ERV-BD, BM-BD and CV-BD. A mean revemngaf;?:;erfoﬁgsg;ﬁdgig"g,“ev‘,'gtfgﬁ;*’ with successful prediction (error
diffusion model without bridging (MRD) is also shown to
illustrate the gain attained by incorporating the prior X.
Additionally, the benchmark Nearest Neighbour (NN) anfbr the nearest neighbour model, which exhibits very poor
Bearing Angle (BA) methods are examined (see [16] fqierformance early in the pointing task and gradually matches
more details). In the former, the destination closest to thgher techniques as the observed track length increases as the
pointing finger-tip position is assigned the highest probabiliyointing finger becomes close to the endpoint. An exception
and vice versa; i.ep (y,|D =d) = N (yn;pa, ofn) Where is the BA model, where the reliability of the heading angle as
ofn is covariance of the multivariate normal distribution. Im measure of intent declines as the pointing finger approaches
BA, p (Ynlyn—1,D = d) = N (6,;0,08,) where the angle to the destination.
destinationd is 0, = £ (yn — yn—1,d) and o3, is a design  The gains from combining the MRD motion model with the
parameter. It assumes that the cumulative angle to the inten@édging technique (MRD-BD) are clearly visible in Figure 4
destination is minimal. compared to the MRD without bridging. This can be attributed

Figure 4 shows that the introduced bridging-distributionge the ability of bridging models to reduce the sensitivity
based inference schemes CV-BD and ERV-BD, achieve the linear destination reverting models to variability in the
earliest successful intent predictions. This is particularly viprocessed trajectories, which reduces the system sensitivity to
ible in the first 70% of the pointing gesture where notablgarameter estimates and thus reduces the parameter training
reductions in the pointing time can be obtained and pointimgquirements. MRD performance versus that of the NN has
facilitation regimes can be most effective (e.g. expandirdpteriorated compared with that in [16] since less parameter
icon(s) size, mid-air selection, etc.). Destination predictidimaining is performed here; only = 5 out of the 50 tested
towards the end of the pointing gesture, e.g. in the last thithcks are used for training to illustrate the low training
of the pointing time, has limited benefit, since by that stagequirement of the applied bridging-distributions-based infer-
the user has already dedicated the necessary visual, cogniémee approach. Similar observations are made for the ERV
and manual efforts to execute the task. In general, the petich has even more parameters than MRD; the quality of its
formance of all evaluated predictors improves as the pointipgedictions without bridging (not shown here) is very poor.
hand/finger is closer to the display. This is particulary visible Figure 5 demonstrates that the proposed bridging-

Predictiol

Ave rag
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distribution-based inference delivers the highest overall corret

destination predictions across the pointing trajectories. Th 4
highest aggregate successes are achieved by the const

velocity and equilibrium reverting velocity models with rel-

atively tight error bounds. This is due to the importance of

the velocity component in the pointing task, which is only

captured by these two models. MRD without bridging has the

largest variance, highlighting its lack of robustness without the

bridging element. NN and BA performances are similar ovel

the considered data set.

It is important to note that small improvements in pointing
task efficiency (effort reduction), even reducing pointing times
by few milliseconds, will have substantial aggregate benefit
on overall user experience since interactions with displays at
very prevalent in typical scenarios, e.g. using a touchscree
in a modern vehicle environment to control the car infotain-
ment system [13], [14]. In a developed initial prototype of
a predictive display system (an optimised C# implementatiol
on a typical automotive computing platform), prediction with
Kalman filtering was tested with up t& = 64 destinations

and an observations data rate30Hz without any noticeable
delays in the system response. Figure 6:Destination inference for ten ship trajectories, heading to

one of six numbered destinations. Thick green lines show the portion

B. Maritime Situational Awareness _of each tr_ajectory for_ which_ the true intend_ed destination_is correctly
: inferred via MAP estimate in (2); thin red lines show portions of the
Figure 6 shows the results of the proposed destinatitiajectory for which this was not the case.

inference algorithm, via the MAP estimate in (2), for a two-

dimensional vessel tracking problem. The aim is to predict T

the endpoint of each vessel, from a setf= 6 possible ) } \ } w

o
©

harbours, based on noisy observatigins of its trajectory up

to the present time,,. The trajectory data is generated from
a bridged constant velocity model, such that tracks begin at a
random point in the middle of the bay (around 20 km from
the shore). It is conditioned on arriving at a chosen destination
port (all equally likely) at a uniformly distributed random
arrival time between 50 and 250 minutes later. Velocity at
arrival is assumed to have a Gaussian distribution with a . ‘ . . ‘
zero mean and standard deviation 10m mirfi.e. relatively % 5 10 15 20 25

slow). The dynamic noise parameterds= 20m min~>/? Number of quadrature points

in both dimensions. Observations are direct measurementd-tgure 7: Proportion of track for which the true destination was

the current vessel position, corrupted by Gaussian noise witferred for different numbers of quadrature points, using Simpson’s
standard deviation of 1m rule as in equation (24), averaged over 100 tracks (error bars show

L . . . . . one standard deviation). End times are uniformly distributed in the
Destination inference in Figure 6 is performed using @terval [50, 250] min, within which the quadrature points are evenly
bridged constant velocity model and the arrival time prior ispaced. For one quadrature pdifit= 250 is assumed for all tracks.

uniform over the interval [50, 250] minutes, i.e(T | D) =
U(50,250). Quadrature was based @n= 15 evenly spaced
arrival times over this time interval, employing Simpson’s rule Figure 7 examines the effect of the number of quadrature
integration as in (24). points ¢ on the endpoint inference outcome for the above
For most of the tracks depicted in Figure 6, the correwessel tracking scenario. This figure shows the average and
intended destination is inferred early in the observed trajectosfandard deviation of the aggregate prediction successes for
When the algorithm fails to achieve such early prediction&00 randomly generated vessel trajectories using Simpson’s
e.g. vessels heading to harbours 2 and 4, visual inspectionr@e quadrature as in equation (24) with varying numbers of
these tracks shows that the vessel in question makes a notajladrature pointg;. Figure 7 illustrates that increasing the
sharp manoeuvre at some point in its trajectory. Prior to thesember of quadrature points (up & = 9) improves the
sharp changes in direction of travel, the vessel appears toifierence performance, after which the success rate levels
heading towards a different endpoint. Nevertheless, after tb#. The result for one quadrature point is that for assuming
manoeuvre is completed, the correct destination is quickly = 250 minutes for all tracks. The results in this figure
inferred. This figure clearly highlights the potential of thelemonstrate that assuming a distribution of arrival times is
proposed bridging-distribution-based destination inference. beneficial for destination inference compared to guessing a

Proportion of track correct
o o
» (=2}
R
— |
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Figure 8:Arrival time estimate (across all possible destinations) for ; 1
a track similar to those shown in Figure 6. The red line shows the
true arrival time and shading shows the posterior density at each tim¢
. . . . . t =116 t =135
single arrival time. Most importantly, it shows that only a few
guadrature points (e.g. 9 in this case) are sufficient to leverag s + 8 s 4 8
this benefit. 46
Figure 8 shows the arrival time estimations for a track 2 2
similar to those considered in Figure 6, applying the techniqu . 1
described in Section IV-D withy = 31 quadrature points.
Initially, the arrival time is uncertain as shown by the diffuse
shading. However, as more trajectory data becomes availabl

the posterior steadily becomes more concentrated in the region
P y gIL—olgure 9: Predicted target position. Shading shows the posterior

of the true arrival t_'me (red line). o distribution of the tracked object position at a range of future time

Finally, the predicted target position at a number of futur@stantst*. The available trajectorX .40, i.e. att,, = 40, is depicted
time instantst* > t,, are displayed in Figure 9, using theby the solid blue track. Top left panel shows the current position
prediction method in Section IV-E. At the time shownp, pos_tgrior att, = 40 _and subsequent eanels exhibi_t th.e predicted
40 observations have been made. The tracked object's tﬁﬁ?é'tt:o” posterior at imeg” > 40, up tot” ~ T'. Red line indicates

o . . . ue trajectory values &t (red dot is the true target position at

position up to each of the assessed future times is shown in r8q. te arrival time and destination are unknown.
Initially, the inference is unimodal, dominated by the object’s
current motion. As predictions are made further into the
future, the possible destinations of the target become visibigry and might not necessarily conform to a known pattern
influential and the predicted position becomes multimodal (e @specially if the intent is malicious). Besides, building a
see the last row in Figure 9). Each of these modes correspondmplete training data set might not be possible for such
to a destinationrd € D and the prediction is dominated byscenarios. The proposed inference algorithms in this paper,
the endpoint(s) deemed to be more probable by the infereekich do not treat intent inference as an anomaly detection
algorithm. For example, the available trajectory (blue lingJroblem, are able to handle such a setting effectively with
leads to more weight being assigned to endpoints 4, 5 ang@sistent predictions (destination, position and time of arrival)
compared to the other possible destinations (notingdhatt  through the use of bridging distributions.
is the true intended destination).

The effect of the unknown arrival tim& (estimated using VI. CONCLUSION
¢ = 25 quadrature points) is reflected in Figure 9 by the shapeThis paper sets out a probabilistic framework for a simple,
of the predicted densities, which resemble a “finger” shapewv complexity intent inference that demands minimal training
pointing to each destination (particularly in the fourth panel aind is amenable to parallelisation. Utilising the bridging
t* = 97). These ‘fingers’ result from an increased uncertaintypproach presented here not only permits earlier predictions,
about where the target is in its approach to each destinatiom also significantly improves the robustness of destination
due to the unknown arrival time. As more observations areverting models against variability in the tracked object be-
made, this effect diminishes due to the increased confideregsiour. The early inference of the destination, future position
in the arrival time, as per Figure 8. and time of arrival of the tracked object, e.g. pointing finger or

Defining a normal trajectory template (pattern of life) fovessel, can bring notable benefits such as reducing the attention
vessels moving towards potential docking points (e.g. ovexquired to interact with in-vehicle displays, enhancing the
relatively short distances as in Section V-B) or protected assatility of maritime surveillance systems and facilitating super-
can be challenging. This is due to the fact that the track&tsed or unsupervised automated warning/assistive functions.
object approach to the intended endpoint can significantflihe inference results from the two applications considered in
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this paper testify to the effectiveness and usefulness of the] B. I. Ahmad, J. K. Murphy, P. Langdon, S. Godsill, R. Hardy, and
introduced prediction algorithms. Whilst linear Gaussian mo-

tion and observation models are considered here, extending the

formulation to a more generic settings (nonlinear and/or non-
Gaussian), could broaden its applicability to other scenarios,

especially when targets undertake sharp manoeuvres prior to

reaching their intended endpoint. This would require the uges)
of Bayesian filtering techniques such as sequential Monte
Carlo algorithms [40], which will entail substantial additionahg]
computational cost. Other extensions include incorporating

constraints into the path followed by the tracked object
modelling endpoints with complicated shapes that cannot E)

28]

approximated by Gaussian distributions, consider interaction
between multiple tracked agents in a scene (e.g. collisi?zq]
avoidance) and others.
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