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Abstract—Hierarchy and leadership interactions commonly
occur in animal groups, crowds of people and in vehicle motions.
Such interactions are often affected by one or more individuals
who possess key domain information (e.g. final destination,
environmental constraints and best routes) or pertinent traits
(e.g. better navigation, sensing and decision making capabilities)
compared with the rest of the group. This paper presents a
framework for the automatic identification of group structure and
leadership from noisy sensory observations of tracked groups.
Accordingly, a new leader-follower model is developed which
assumes the dynamics of the group to be a multivariate Orn-
stein–Uhlenbeck process with the designated leader(s) drifting
to the destination and followers reverting to the leaders’ state.
Sequential Monte Carlo (SMC) approaches, and specifically the
sequential Markov chain Monte Carlo (SMCMC) approach,
are adopted to infer, probabilistically, the evolving leadership
structure. A Rao-Blackwellisation scheme is employed such that
the kinematic state of the objects in the group is inferred in closed
form by Kalman filtering. Experiments show that the proposed
techniques can successfully determine the leadership structures
in challenging scenarios with a corresponding enhancement in
tracking accuracy through direct consideration of the leadership
interactions of the group.

Index Terms—leader-follower model, sequential Markov chain
Monte Carlo, group tracking, network tracking

I. INTRODUCTION

IN group tracking scenarios such as for animals, drone
swarms and crowds of people, members of a group can

be constantly interacting with one another. This collective
behaviour was first investigated by Reynolds in [25], where
a distributed behavioral model was proposed to describe the
Boids flock motion under the rules of centering, collision
avoidance, and velocity matching. Besides these general rules,
there exist many unique interaction patterns in groups (see e.g.,
[14, 34]), and a very common one is leadership or hierarchical
structure, as is widely observed in nature. A well known
example is bird flocking, where for instance geese fly in a
V-formation and take turns to lead the group during migration
from north to south [6, 24]. A swarm of drones can also exhibit
a leader-follower formation where a drone piloted by a human
or following a predefined trajectory leads the other swarm
members when carrying out missions such as monitoring or
delivery [28, 31]. Other typical scenarios include a flight of
aircraft and convoy of ground vehicles [23].

The benefits of studying this leader-follower formation in
group tracking domain are twofold. First, learning this group
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structure information can enhance the tracking performance by
incorporating interactions into the design of dynamic models.
Second, the interaction pattern itself facilitates higher level
understanding of the observed scene, which can be valuable
in applications such as anomaly detection, intent prediction
for surveillance and crowd management during emergencies.
This paper addresses the problem of sequentially inferring the
dynamic leadership structure of tracked groups of objects over
time.

A. Related Work

The leader-follower strategy has originally been described
by Stackelberg in economics for static two-person games with
one player being the leader and the other being follower [33].
Later, it has been widely adopted in formation control of a
leader-follower robotic/drone system, where one robot/drone is
chosen as the leader which controls the movement of the whole
group, and the others are the followers with desired relative
separations and bearings [5, 31]. The leader-follower model
has also found its application and been developed further in
the tracking domain [3, 10, 19, 23]. Compared with such prior
work, here a new leader-follower model is proposed in which
the leadership structure can dynamically evolve over-time, and
an online inference routine is sought in lieu of batch inference
methods when all relevant sensory data is available.

In the leader-follower model, the followers typically revert
to the kinematic state of a virtual leader which is an explicit
additional group state normally modelled as the average posi-
tion and velocity of all objects [18, 23, 26]. Apart from virtual
leader, the defined leaders could also be the physical entities in
the group, for example pigeon(s) in a flock of pigeons or fish
in a fish school (i.e. group members). Such leader-follower
model has been proposed in [16] for tracking a group of
manoeuvring objects, which focuses exclusively on enhancing
the group tracking performance by adopting the premise that
the identity of the member(s) leading the group is available. By
contrast, in this paper, the group leaders are a priori unknown
physical entities, and the main objective is to sequentially
reveal the leadership and dominance hierarchy in the tracked
group from the available (noisy) sensory observations with
suitable sequential algorithms.

Several methods have been introduced to discover the
leadership pattern of the group, e.g. [3, 4, 20]. For instance, in
[20], a sparse structure inference technique has been proposed
to find the leadership and interaction pattern among group
members. A causality reasoning framework has been used
to rank objects with respect to their dominance effect [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/373373408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 2

These two approaches and others, e.g. [3, 8], assume that
the interaction pattern within groups is fixed over time and/or
apply batch inference when all related sensor measurements
of the group are available. Whereas, here the leadership and
dominance hierarchy can dynamically change over time and
an online inference framework is sought, i.e. leadership is
sequentially estimated at the arrival of new observation(s),
unlike in [3, 4, 8, 20].

The Bayesian leadership inference framework proposed in
this paper builds on and generalises the preliminary work of
[17], in which a rotated leadership model was introduced to
determine a dynamically changing leadership structure and
implemented with sequential Monte Carlo methods. In the
current work, both the leader and the number of leaders may
vary over time, contrary to the formulation in [17], which
stipulates that the group is led by only one individual. Such
leadership and dominance patterns are prevalent in animal
groups, where the group is led by one or more (usually a
small proportion) of informed and/or competent individuals
who possess information about the group objectives such as the
position of the food source or the migration path. An example
explored in this paper is the behaviour of a golden shiner fish
school, where in the group a selected few members are trained
to know the food source and they are typically followed by
the other (non-trained) fish to the food location (i.e. the group
final destination) as reported in [29].

Compared to the rotated leadership dynamic model in [17],
here we facilitate the task of tracking and leadership inference
by exploiting the existence of available prior information that
influences the leaders’ long-term behaviour, for instance a
known endpoint in the case of fish seeking food or homing pi-
geon flocks. For these tasks, we propose a destination-reverting
model [1] to model the leaders’ dynamics, such that the
motion of the whole group is treated as an Ornstein–Uhlenbeck
process with leader(s) reverting to the desired destination and
the followers drifting towards the leaders. Such intent-driven
leadership behaviour was not addressed in [17] and we employ
real data from two animal group tracking scenarios in order to
demonstrate that such knowledge can be effectively captured
within the proposed framework.

B. Contributions

A principal contribution in this paper is the development
of a novel and more flexible leader-follower model based
on a rotated leadership formulation. This enables a dynam-
ically changing group leadership structure where one or more
group members can be leaders. Within the proposed Bayesian
framework, intent or destination-driven behaviour can be also
incorporated for cases when the destination is known as
a priori, and this is modelled by an Ornstein–Uhlenbeck
process, for example with leader(s) reverting to the intended
endpoint. We note that a special case of our model sets
the destination-driving force to zero (for scenarios where
destination is unknown or unimportant), and in that case the
model for leader(s) reduces to a dynamic leadership version
of [17]. An appropriate online inference approach, namely
the sequential Markov chain Monte Carlo approach, is then

utilised to infer the leadership state sequentially over time from
the available noisy sensory observations. Specifically, a Rao-
Blackwellisation scheme is employed such that the kinematic
state of the objects can be marginalised out and its poste-
rior distribution inferred using Kalman filtering. We propose
several different versions of the SMCMC algorithm here and
compare with other more standard sequential Monte Carlo
techniques. Finally, real data from two animal group tracking
scenarios, as well as synthetic data, are used to illustrate the
efficacy of the introduced leadership inference framework. The
results from the analysis of real data demonstrate that un-
derstanding or validating hypotheses about animal behaviour
(e.g. from a biological perspective) can be effectively achieved
by using an appropriate Bayesian inference approach, thereby
potentially reducing the manual analysis of the recorded data.

C. Paper Outline
The remainder of this paper is structured as follows.

Section II presents the leader-follower model for describing
group motions and interactions. Section III presents the Rao-
Blackwellisation scheme and the inference algorithms are
detailed in Section IV. In Section V, the performance of the
proposed model is evaluated using both synthetic and real
pigeon flock and fish tracking data. Conclusions are given in
Section VI.

NOMENCLATURE

α scale parameter that qualifies the leaders’ impact on
the position of the follower

β scale parameter that qualifies the leaders’ impact on
the velocity of the follower

η a parameter that quantifies the influence of the end-
point on the leader

γ the drag coefficient preventing the velocities drifting
to large values over time

ρ the Metropolis-Hastings acceptance ratio
τ the time interval between successive observations
ALt

the transition matrix given the current leadership struc-
ture Lt at time t

D the position of the destination in any corresponding
dimensionality

d dimension of the space (e.g., motion in 2-D has d = 2)
FD,j(t) an attraction force exerted by the endpoint on the

leader j at time t
FLt,i(t) an attraction force exerted by all the leaders in the

leadership structure Lt on the ith follower at time t
K the total number of all possible leadership structures
Lt the group leadership structure state at time t
M the total number of iteration
N the total number of objects in a group
n the observation time step at tn
Np number of particles used in the Monte Carlo methods
S the set of all possible leadership structures
Sk the k-th leadership structure
tn time instant at time step n
w

(i)
n the weight of particle i at time step n in the MPF

algorithm
Zn observations received at time step n
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(a) Force on followers relative to leader’s position and force on
the leader relative to the destination point

(b) Force on followers relative to leader’s velocity

Fig. 1: The dynamic leadership model in the group

II. PROPOSED MODEL

The aim of modelling is to describe the motion of a
group led by one or a few group members who possess
information about the group intent in terms of destination.
Within the introduced framework the term ‘destination’ has
some generality as it can include terminal velocity as well
as the more common concept of physical location. In our
subsequent formulations, the latter concept is illustrated. It is
emphasised that the presented modeling here also applies when
the leader(s) behaviour is not driven by an intended endpoint
by setting the force destination exerted on leader(s) to zero.

Assume that there are N objects in a group. Let S be
the set of all possible group/leadership structures such that
S = {Sk}Kk=1 and K = |S| is their total number. Each Sk
specifies the indices of the individuals having a leadership role
in the k-th leadership structure. The value of K depends on the
prior information about the group structure we process. If no
prior information is obtained, then K = 2N − 1 where S lists
all possible combinations of each individual being either the
leader or the follower (excluding the case with no leadership
pattern in the group). For example, if we have a group of
2 objects, then S has a total of K = 3 possible leadership
structures, with S1 = {1}, S2 = {2}, S3 = {1, 2}. Otherwise
the value of K could be much smaller if an informative prior
is sought, e.g. an exactly-one-leader condition.

We propose to use two kinds of force to represent group
interactions. One set of interactions is between a destination
and each leader, such that an attraction force is exerted by
this endpoint on the leader with its strength proportional to
the distance from the leader’s position to the destination. Let
Lt ∈ S be a random variable representing the group leadership

structure state at time t. Assume the motion of the objects
in each dimension are mutually independent. For each leader
j ∈ Lt in the d-th dimension, the aforementioned attraction
force F dD,j(t) is expressed as

F dD,j(t) = η(Dd − xdj (t)), (1)

where Dd denotes the position of the destination in any
corresponding dimensionality, xdj (t) is the position of the
leader j, and η is a parameter which quantifies the influence
of the intended endpoint on the leader.

The second level of interaction is between leaders and
followers. For each follower, a force F dLt,i

(t) is defined to
quantify the influence of all the leaders in the leadership
structure Lt on the ith follower at the current time t as per

F dLt,i(t) =
∑
j∈Lt

α(xdj (t)−xdi (t))+
∑
j∈Lt

β(ẋdj (t)−ẋdi (t)), (2)

where xdi (t) and ẋdi (t) are the position and velocity of follower
i, respectively, and i ∈ {1, ..., N}−Lt

, i.e. object i is not
a leader. Parameters α and β set the strength of the leader
impact on the position and velocity of the ith follower. Here,
we assume that the values of α and β are known scalars
and the influence of each leader on the followers is identical,
for reasons of simplicity. These restrictions are easily relaxed
within our framework and parameter learning for these models
is outside the scope of this paper.

Consequently, the motion of the group can be described by a
set of coupled Ornstein-Uhlenbeck processes governed by two
kinds of force, one that tends to drive each leader towards
the destination while the other steers the followers towards
the leaders’ position and velocity. This modelling approach
can be readily adapted to scenarios without the destination
prior information by simply setting the force F dD,j(t) to
zero. Overall such a dynamic system can be expressed using
a continuous-time stochastic differential equation (SDE) as
follows

dẋdi (t) =
(
F dLt,i(t)− γẋ

d
i (t)

)
dt+ dBdi (t), i ∈ {1, ..., N}−Lt

(3)

dẋdj (t) =
(
F dD,j(t)− γẋdj (t)

)
dt+ dBdj (t), j ∈ Lt, (4)

where γ is the drag coefficients, preventing the velocities
drifting to large values over time. Whereas, Bdi (t) and Bdj (t)
are independent Brownian motion for each follower and leader.

For each dimension, define the joint state of N objects as
Xd(t) = [xd1:N (t), ẋd1:N (t)]T . Conditioned on the leadership
state Lt, the dynamic model of the joint state Xd(t) is linear
and Gaussian. It is modelled by the SDE

dXd(t) = ALt
Xd(t)dt+ ηWdt+ CdBd(t), (5)

where Bd(t) ∈ RN is a Brownian motion with the diagonal
covariance matrix Qdw = diag(σ2

1 , σ
2
2 , ..., σ

2
N ) and matrix C ∈

R2N×N has the form

C =

[
0N×N
IN×N

]
. (6)

The transition matrix ALt and W are given by

ALt =

[
0N×N IN×N
αN×N βN×N − γN×N

]
,W =

[
0N×1
DN×1

]
, (7)
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where γ = diag(γ, . . . , γ). The values of αN×N , βN×N in
matrix ALt , andDN×1 in vector W depends on the leadership
state Lt. Next, those matrices/vectors are defined explicitly.

In matrix αN×N , for each leader j: 1) the corresponding
value of αj,j is set as −η and 2) other entries in the jth

row are all zeros. For each follower i (of a leader j): 3) all
entries {αi,j}j∈Lt in row i are set as α, 4) αi,i is equal to
−
∑
j∈Lt

α, and 5) the other elements in the ith row of α are
zeros. In matrix βN×N , for each leader j, the corresponding
j row is set to the zeros vector 01×N . For the follower i,
the ith row in βN×N is specified similar to that of αN×N ;
however α is replaced by β. In vector DN×1, for each leader
j, the corresponding j row equals one, with the other rows for
followers being zeros. We recall that α, β and γ are assumed
to be known constants.

To clarify the matrices definitions in (7), we present an
example for a group of four object with the (inferred) leaders
being {1, 2}. In this case, α4×4 is given by

α =


−η 0 0 0
0 −η 0 0
α α −2α 0
α α 0 −2α

 , (8)

matrix βN×N has a similar form as per

β =


0 0 0 0
0 0 0 0
β β −2β 0
β β 0 −2β

 , (9)

and vector DN×1 in vector W in (7) given by

D4×1 =


Dd

Dd

0
0

 . (10)

Therefore, the state-space model can be obtained by inte-
grating the SDE in (5)

Xd(t+ τ) = FLtX
d(t) + µD +wd

t , (11)

with the transition matrix FLt and vector µD being

FLt
= eτALt , (12)

µD = ηA−1Lt
(eτALt − I)W, (13)

where τ is the time interval between successive observations,
which could be time-varying. Here, equally spaced observa-
tions are considered as a simplification, which can be easily
relaxed for irregular data arrival times.

The dynamical noise in the state space model in (11) is
Gaussian, wd

t ∼ N (0, Pτ ), with covariance Pτ ,

Pτ = eτALtP0e
τAT

Lt +

∫ τ

0

etALtCQdwC
T etA

T
Ltdt. (14)

This integral can be evaluated using the matrix fraction decom-
position [30]. We especially let P0 = C0E0, C0 = P0 = 0,
E0 = I and subsequently we have(

Cτ
Eτ

)
= exp

{(
ALt

LtQ
d
wL

T
t

0 −ATLt

)
τ

}(
C0

E0

)
, (15)

from which the covariance can be calculated by Pτ = CτEτ .
Additionally, a linear Gaussian observation model is em-

ployed in this paper. Since the focus here is on modelling
and then sequentially inferring the group interaction/leadership
structure, we assume for simplicity that data association is
known a priori. This corresponds to the real data examples in
Section V-B, where the measurements association has already
been manually extracted from video data (e.g., the fish school
scenario) or each target carries a sensor (e.g., each pigeon
in a flock is equipped with a GPS receiver). For strategies
of addressing the data association problem, see for instance
[22, 32]. At observation time instant tn we have

Zdn = HXd
n + vdn, (16)

where Xd
n is the latent state at the measurement time tn; n

denotes the time step. The i.i.d observation noise obeys vdn ∼
N (0, Qv), with the mapping matrix H defined by

H =

[
IN×N 0N×N
0N×N 0N×N

]
, (17)

when noisy position observations are available. This nonethe-
less can be easily extended to other scenarios when for
example velocities are observed. We will in practice assume
that the noise parameters σ1:N and σv are pre-specified, e.g.
by considering the sensor(s) characteristics.

After deducing the kinematic state for N objects in each
dimension, under the assumption of dimension independence,
the joint state for objects moving in a d-dimensional space can
be easily expanded to Xn = [X1

n, ..., X
d
n].

A simple state-independent leadership transition is proposed
in this paper such that the sequence of Ln (i.e., leadership at
the time instant tn) follows a first-order discrete time Markov
chain with the following transition probability

p(Ln|Ln−1, Xn−1) = p(Ln|Ln−1), (18)

where p(Ln|Ln−1) denotes a fixed transition probability. For
examples of state-dependent transition probabilities in groups
see e.g., [10, 23]. Here, we specify a higher probability to
an unchanged leadership pattern Ln = Ln−1, compared to
Ln 6= Ln−1, as the leadership pattern is typically slowly
changing and not subject to rapid switching; more details are
provided in the experimental results in Section V-B. In our
simulations, we adopt a switching prior in which all leader-
ship structures may be switched to with equal probabilities
(although the fish school real data example limits the number
of leaders to 2). We apply such a generic scheme in order to
illustrate the very effective exploration of the state space by our
methods; however, more specific prior knowledge can easily
be incorporated into the model, if needed, such as limiting
the total number of leaders or permitting only certain objects
to take leadership roles. This will enhance the efficiency of
the estimation by reducing the numbers of possible leadership
changes at the next time step. We note that it would also be
possible within our framework to allow the state switching
process to operate in continuous time, and this could be
accomplished using for example a variable rate particle filter
algorithm [11], although this is not explored in the current
work.
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III. STATE ESTIMATION

Given the sequence of observations from time step 0 to n,
Z0:n, a principal objective is to compute the joint probability
density p(Xn, L0:n|Z0:n), which can be expanded as:

p(Xn, L0:n|Z0:n) = p(L0:n|Z0:n)p(Xn|L0:n, Z0:n). (19)

The posterior distribution p(L0:n|Z0:n) is not in a standard
form and therefore sampling methods such as sequential
Markov chain Monte Carlo (SMCMC) can be utilised to
infer sequentially the leadership state, although the tractable
Gaussian structure of the conditional model p(Xn|L0:n, Z0:n)
leads to substantial simplifications. The marginal posterior dis-
tribution p(L0:n|Z0:n) is approximated by a set of unweighted
particles {L(i)

0:n}
Np

i=1 obtained at time instant tn as per:

p̂(L0:n|Z0:n) =
1

Np

Np∑
i=1

δ
L

(i)
0:n

(L0:n), (20)

where Np denotes the number of the particles, Z0:n is the
observation sequence up to time step n, and δy(x) is the Dirac
function located at x = y. Detailed schemes for sequential
sampling in this framework are presented in Section IV.

Conditional on the leadership state L0:n, the dynamic model
for Xn is linear and Gaussian. For this partially tractable state
space model, a Rao-Blackwellisation scheme can be applied
to improve the efficiency of the algorithm. In this way, the
marginal distribution of the linear part Xn can be estimated
from the leadership samples, resulting in a Gaussian mixture
Monte Carlo approximation:

p(Xn|Z0:n) =

∫
p(Xn, L0:n|Z0:n)dL0:n

=

∫
p(L0:n|Z0:n)p(Xn|L0:n, Z0:n)dL0:n

=
1

Np

Np∑
i=1

∫
p(Xn|L(i)

0:n, Z0:n)δL(i)
0:n

(L0:n)dL0:n

≈ 1

Np

Np∑
i=1

p(Xn|L(i)
0:n, Z0:n),

(21)

where every conditional distribution p(Xn|L(i)
0:n, Z0:n) =

N (µ
(i)
n|0:n, P

(i)
n|0:n) may be calculated by Kalman filtering as

follows:

µ
(i)
n|0:n−1 = F

L
(i)
n
µ
(i)
n−1|0:n−1, (22)

P
(i)
n|0:n−1 = F

L
(i)
n
P

(i)
n−1|0:n−1F

T

L
(i)
n

+ Pτ , (23)

µ
(i)
n|0:n = µ

(i)
n|0:n−1 + kn(Zn −Hµ(i)

n|0:n−1), (24)

P
(i)
n|0:n = (I − knH)P

(i)
n|0:n−1, (25)

kn = P
(i)
n|0:n−1H

T
(
HP

(i)
n|0:n−1H

T +Qv

)−1
. (26)

The likelihood is then p(Zn|Z0:n−1, L
(i)
0:n) = N (µ

(i)
Zn
, P

(i)
Zn

),
whose mean and covariance are calculated by the prediction
error decomposition [13]:

µ
(i)
Zn

= Hµ
(i)
n|0:n−1,

P
(i)
Zn

= HP
(i)
n|0:n−1H

T +Qv.
(27)

IV. LEADERSHIP INFERENCE ALGORITHM

For the leadership state L0:n, the prediction and update step
for the posterior distribution p(L0:n|Z0:n) are

p(L0:n|Z0:n−1) = p(L0:n−1|Z0:n−1)p(Ln|Ln−1) (28)

p(L0:n|Z0:n) =
p(Zn|Z0:n−1, L0:n)p(L0:n|Z0:n−1)

p(Zn|Z0:n−1)
, (29)

where p(Zn|Z0:n−1) is a normalization constant equal to

p(Zn|Z0:n−1) =

∫
p(Zn|Z0:n−1, L0:n)p(L0:n|Z0:n−1)dL0:n.

(30)
Although a closed form expression for p(L0:n|Z0:n) and

the normalising constant are analytically available, the search
for the optimal leadership sequences involves an intractable
growth of permutations as time evolves, and hence sequential
Monte Carlo methods such as the regular particle filter might
be suitable for sequential inference of the leadership state
sequences. However, when the number of objects in a group
increases, the general particle filter methods suffer from a
well known degeneracy problem [2]. Markov chain Monte
Carlo (MCMC) techniques have been shown to be effective
in high-dimensional cases and sequential MCMC approaches
have been developed recently, which can be employed in an
online inference setting [7, 27, 35]. Therefore, here we adopt
the SMCMC method to infer the leadership state. We present
several different versions of the SMCMC algorithm, and its
special case, an online Gibbs sampler. The performance of all
these methods is then demonstrated in Section V.

A. Sequential Markov Chain Monte Carlo

In the SMCMC method, the joint leadership posterior
p(L0:n|Z0:n) is specified as the stationary distribution of a
Markov chain at time step n. From equations (28)-(29), this
posterior distribution is expressed as:

p(L0:n|Z0:n) ∝p(Zn|Z0:n−1, L0:n)p(Ln|Ln−1)
× p(L0:n−1|Z0:n−1). (31)

During the inference routine, once the stationary distribution
p(L0:n−1|Z0:n−1) is attained at time step n − 1, it can be
approximated empirically by a set of Np unweighted samples
from the converged chain:

p̂(L0:n−1|Z0:n−1) =
1

Np

Np∑
i=1

δ
L

(i)
0:n−1

(L0:n−1). (32)

By using this approximation, the posterior distribution
p(L0:n|Z0:n) can be obtained sequentially from the last as:

p(L0:n|Z0:n) ∝
1

Np

Np∑
i=1

p(Zn|Z0:n−1, L
(i)
0:n−1, Ln)

× p(Ln|L(i)
n−1)δL(i)

0:n−1
(L0:n−1).

(33)

In this section, we introduce two different joint proposals
for this SMCMC sampler, which includes a prior dynamics-
based proposal and an optimal kernel proposal. Both of these
are developed as independence samplers in which the newly



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 6

proposed sample L∗0:n at iteration m does not depend on the
sample Lm−10:n at the last iteration m−1, i.e. q(L∗0:n|Lm−10:n ) =
q(L∗0:n). The proposals generated are then either rejected or ac-
cepted according to a Metropolis-Hastings (M-H) acceptance
ratio ρ. The general process of this sequential MCMC is given
in Algorithm 1.

1) Prior proposal: A joint proposal q(L0:n|Z0:n) is de-
signed where Ln and L0:n−1 are updated jointly. Specifically,
the proposal is expressed as:

q(L0:n|Z0:n) =
1

Np
p(Ln|Ln−1)

Np∑
i=1

δ
L

(i)
0:n−1

(L0:n−1), (34)

where we first sample L∗0:n−1 from p̂(L0:n−1|Z0:n−1) as in
(32), and then propose L∗n from p(Ln|L∗n−1). In this case, the
acceptance function ρ′ is calculated using:

ρ′ =
p(L∗n, L

∗
0:n−1|Z0:n)q(L

m−1
0:n |Z0:n)

p(Lm−1n , Lm−10:n−1|Z0:n)q(L∗0:n|Z0:n)

=
p(Zn|Z0:n−1, L

∗
0:n)

p(Zn|Z0:n−1, L
m−1
0:n )

.

(35)

Consequently, the proposed samples are either accepted or
rejected according to the acceptance ratio:

ρ = min

(
1,

p(Zn|Z0:n−1, L
∗
0:n)

p(Zn|Z0:n−1, L
m−1
0:n )

)
. (36)

After burn-in time Nburn, we store samples once every
Nthin points and discard the others in order to reduce the
autocorrelation. The posterior is then approximated by the
resulting set of converged particles {L(i)

0:n}
Np

i=1. The filter-
ing distribution p(Ln|Z0:n) can also be easily attained by
marginalising L0:n−1 from the Monte Carlo representation,
requiring no direct integration. This approach, however, entails
a computational complexity of order O(N2

p ).
2) Optimal proposal: In the optimal situation, the joint

proposal will be in the form of the approximated sought
distribution at time n, i.e. p(L0:n|Z0:n),

q(L0:n|Z0:n) = p(L0:n|Z0:n)

= p(Ln|L0:n−1, Z0:n)
p(L0:n−1, Zn|Z0:n−1)

p(Zn|Z0:n−1)

∝ p(Ln|L0:n−1, Z0:n)p(Zn|L0:n−1, Z0:n−1)p(L0:n−1|Z0:n−1)

=
1

Np
p(Ln|L0:n−1, Z0:n)

Np∑
i=1

p(Zn|L(i)
0:n−1, Z0:n−1)

× δ
L

(i)
0:n−1

(L0:n−1) (37)

To obtain the joint samples, we first sample L∗0:n−1
from 1

Np

∑Np

i=1 p(Zn|L
(i)
0:n−1, Z0:n−1)δL(i)

0:n−1
(L0:n−1), and

then propose L∗n from p(Ln|L∗0:n−1, Z0:n).
In general, the challenge in utilising this optimal ker-

nel is that we can neither sample from the proposal
p(Ln|L0:n−1, Z0:n) nor calculate p(Zn|L(i)

0:n−1, Z0:n−1), see
[9] for the importance sampling case. In this paper, however,
both of these distributions have closed form due to the discrete
nature of leadership state and the linear Gaussian form for

the object dynamics. In particular, for each particle i, the
likelihood p(Zn|L(i)

0:n−1, Z0:n−1) can be evaluated as:

p(Zn|L(i)
0:n−1, Z0:n−1)

=

∫
p(Zn|L(i)

0:n−1, Ln, Z0:n−1)p(Ln = j|L(i)
0:n−1, Z0:n−1)dLn

=
1

K

∑
Ln∈S

p(Zn|L(i)
0:n−1, Ln, Z0:n−1)p(Ln|L(i)

n−1) (38)

where K is the number of possible leadership structures.
Similarly, the distribution p(Ln|L∗0:n−1, Z0:n) can be de-

duced as a discrete distribution:

p(Ln|Z0:n, L
∗
0:n−1) =

p(Ln, L
∗
0:n−1|Z0:n)

p(L∗0:n−1|Z0:n)

∝ p(Zn|Z0:n−1, L
∗
0:n−1, Ln)p(L

∗
0:n−1|Z0:n−1)p(Ln|L∗n−1)

=
1

K

∑
Sk∈S

p(Zn|Z0:n−1, L
∗
0:n−1, Ln = Sk)

× p(Ln = Sk|L∗0:n−1)δSk
(Ln), (39)

where p(L∗0:n−1|Z0:n−1) is a constant when L∗0:n−1 is known.
The value of likelihood p(Zn|Z0:n−1, L

∗
0:n−1, Ln) and the

transition density p(Ln|L∗n−1) can be individually computed
according to different values of {Ln = Sk}Kk=1.

As the proposal is chosen as the stationary distribution,
i.e., the leadership posterior, the acceptance function ρ here
is calculated as

ρ =
p(L∗0:n|Z0:n)q(L

m−1
0:n )

p(Lm−10:n |Z0:n)q(L∗0:n)
= 1 (40)

Therefore, the joint proposed samples are always accepted.
In fact, since we are targeting the joint approximate poste-

rior directly, we can see that this has reduced to an example of
standard Monte Carlo and there is no MCMC burn-in required.
The samples are still nonetheless approximate owing to the
Monte Carlo approximation that is incorporated at each step
as p̂(L0:n−1|Z0:n−1).

Algorithm 1: General sequential MCMC algorithm

1 Initialization: {L(i)
0 }

Np

i=1

2 for time step n = 0 to T do
3 initialization
4 for iteration m = 1 to M do
5 sample L∗0:n from q(L0:n)
6 compute the acceptance ratio:

ρ = min
(
1,

p(L∗
0:n|Z0:n)q(L

m−1
0:n )

p(Lm−1
0:n |Z0:n)q(L∗

0:n)

)
7 accept (Lmn , L

m
0:n−1) = (L∗n, L

∗
0:n−1)

8 After a burn-in time
9 for i = 1 : Np do

10 store L(i)
0:n = L

Nburn+(i−1)∗Nthin

0:n

11 p(L0:n|Z0:n) =
1
Np

∑Np

i=1 δ(L0:n − L(i)
0:n)
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3) Online Gibbs sampler: The Gibbs sampler is a special
case of the M-H algorithm in which the acceptance ratio
is always one. In this part, we propose an online Gibbs
sampler which can, as before, sequentially infer the leadership
parameter L0:n with the joint distribution p(L0:n|Z0:n) as
the stationary distribution at time step n. The premise of
utilising the Gibbs sampler here is that both full condition-
als p(Ln|Z0:n, L0:n−1) and p(L0:n−1|Z0:n, Ln) have closed
forms. The conditional distribution p(Ln|Z0:n, L

m−1
0:n−1) yields

the following discrete distribution by using the approximation
in (32):

p̂(Ln|Z0:n, L
m−1
0:n−1) ∝ p(Zn|Z0:n−1, L

m−1
0:n−1, Ln)

× p(Ln|Lm−1n−1 )p(L
m−1
0:n−1|Z0:n−1)

=
1

K

∑
Sk∈S

p(Zn|Z0:n−1, L
m−1
0:n−1, Ln = Sk)

× p(Ln = Sk|Lm−10:n−1)δSk
(Ln).

(41)

Having computed the sample Lmn , the Lm0:n−1 can be sampled
from the condition distribution p(L0:n−1|Z0:n, L

m
n ) with its

analytical expression in a form of a discrete distribution as
per:

p̂(L0:n−1|Z0:n, L
m
n ) ∝ 1

Np

Np∑
i=1

p(Zn|Z0:n−1, L
(i)
0:n−1, L

m
n )

× p(Lmn |L
(i)
n−1)δL(i)

0:n−1
(L0:n−1) (42)

where Np is the total number of the samples. The process of
Gibbs sampler is summarised in Algorithm 2.

Algorithm 2: Gibbs sampler

1 Initialization: {L(i)
0 }

Np

i=1

2 for time scan n = 0 to T do
3 Initialization
4 for iteration m = 0 to M − 1 do
5 Given Lm−1n−1 , sample
6 Lmn ∼ p(Lmn |Z0:n, L

m−1
0:n−1) as in (41);

7 Given Lmn , sample
Lm0:n−1 ∼ p(Lm0:n−1|Z0:n, L

m
n ) as in (42);

8 Repeat the process for M times. After a burn-in
time, keep the subsequent Np converged samples
{L(i)

n−1, L
(i)
n }Np

i=1.

Compared to the SMCMC-prior sampler with a compu-
tational complexity of O(Np), both the SMCMC-optimal
and online Gibbs sample have a computation complexity of
O(N2

p ).

B. Marginal Particle Filter

As the state of leadership parameter is discrete and finite,
we could alternatively implement the marginal particle filter
[15][12]. As before, the Rao-blackwellisation is applied and
the kinematic state distribution of objects are estimated by
using Kalman filtering.

In the marginal particle filter, the filtering distribution
p(Ln|Z0:n) is utilised as the target distribution instead of

the joint posterior p(L0:n|Z0:n), with purpose of mitigating
the degeneration problem of particle filter in high-dimension
case. Assume the posterior distribution p(L0:n−1|Z0:n−1)
is approximated empirically by a set of weighted particles
{L(i)

n−1, w
(i)
n−1}

Np

i=1 obtained at time step n− 1:

p̂(L0:n−1|Z0:n−1) =
1

Np

Np∑
i=1

w
(i)
n−1δL(i)

0:n−1
(L0:n−1), (43)

where the weight
∑Np

i=1 w
(i)
n−1 = 1.

It follows that the prediction step can be formulated as:

p(Ln|Z0:n−1) =
1

Np

Np∑
j=1

w
(j)
n−1p(Ln|L

(j)
n−1), (44)

and the update step at time n is written as:

p(Ln|Z0:n) ∝
Np∑
j=1

w
(j)
n−1p(Zn|Z0:n−1, L

(j)
0:n−1, Ln)p(Ln|L

(j)
n−1).

(45)

The general process of this marginal particle filter is given in
Algorithm 3. At each time step n, each particle L(i)

n is first
sampled from the defined proposal q(Ln|Z0:n), which assumes
to have the form of:

q(Ln|Z0:n) =

Np∑
j=1

w
(j)
n−1q(Ln|L

(j)
0:n−1, Z0:n). (46)

Subsequently, the corresponding weight is calculated via:

w(i)
n =

p(L
(i)
n |Z0:n)

q(L
(i)
n |Z0:n)

, (47)

and it is further normalised to make sure the sum of the
weights equals one.

Similarly, here we analyse two different proposals, the prior
and optimal proposal, as comparisons to the above SMCMC
methods.

Algorithm 3: General marginal particle filter

1 Initialization: {L(i)
0 , w

(i)
0 }

Np

i=1

2 for time scan n = 1 to T do
3 for particle i = 1 to NP do
4 sample L(i)

n from q(Ln|Z0:n) as in (46)
5 evaluate the weight ŵ(i)

n as in (47):

6 Normalization: w(i)
n =

ŵ(i)
n∑Np

j=1 ŵ
(j)
n

7 p(Ln|Z0:n) =
1
Np

∑Np

i=1 w
(i)
n δ(Ln − L(i)

n )

1) Prior proposal: Specifically, the prior proposal to gen-
erate Ln in Algorithm 3 is designed as:

q(Ln|Z0:n) =

Np∑
j=1

w
(j)
n−1p(Ln|L

(j)
n−1). (48)
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After we have sampled L(i)
n , the weight is computed as per:

w(i)
n =

∑Np

j=1 w
(j)
n−1p(Zn|Z0:n−1, L

(j)
0:n−1, L

(i)
n )p(L

(i)
n |L(j)

n−1)∑Np

j=1 w
(j)
n−1p(L

(i)
n |L(j)

n−1)
.

(49)
The general step of marginal particle filter using prior pro-
posal endures a computational complexity of O(N2

p ), whereas
that of the standard particle filters is O(Np). Techniques
have been proposed to reduce the computation complexity to
O(NplogNp), see [15] for more details.

2) Optimal proposal: In this approach, we assume the
optimal proposal:

q(Ln|Z0:n) =

Np∑
j=1

w
(j)
n−1p(Ln|L

(j)
0:n−1, Z0:n). (50)

After we have sampled L
(i)
n , the weight for the particle i is

computed according to:

w(i)
n =

∑Np

j=1 w
(j)
n−1p(Zn|Z0:n−1, L

(i)
0:n−1)p(L

(i)
n |L(j)

0:n−1, Z0:n)∑Np

j=1 w
(j)
n−1p(L

(i)
n |L(j)

0:n−1, Z0:n)

= p(Zn|Z0:n−1, L
(i)
0:n−1) (51)

We can observe that the samples drawn are equivalent
marginally to the draws from the joint optimal proposal in
Section IV-A. Here, this scheme again can be seen to reduce
to a standard Monte Carlo.

V. RESULT

In this section, we evaluate the proposed dynamic leadership
inference approach on both synthetic and real animal data.
For the former, two datasets with different parameter settings
are generated in order to compare the leadership state esti-
mation performance of the different sequential Monte Carlo
algorithms introduced in Section IV. Subsequently, we assess
the performance of the developed techniques for the task
of analysing animal collective behaviour. In particular, the
dynamic leadership pattern in two moving animal groups is
examined; they are a homing pigeon flock [21] and a fish
school [29].

A. Synthetic Data

The two synthetic datasets used here are simulated utilising
the dynamic model in Section II, and each dataset includes
100 Monte Carlo runs. For dataset 1, we have observations of
a group of four objects moving over 100 time steps, and the
time interval between observations is τ = 1s. The group model
parameters are: α = 0.2, β = 0.2, γ1:N = 0.1 and η = 0.005.
Whereas, the noise parameters are set as σ1:N = 2 and σv = 1.
The destination D and the leadership pattern L0:T are assigned
randomly over 100 Monte Carlo. In dataset 2, we double
the group size in order to evaluate the performance of these
algorithms in a higher dimension case and observations of
eight objects are generated; all other parameters are identical
to those of dataset 1.

For all the sequential Monte Carlo methods we presented
here, 1000 particles are employed to approximate p(L0:n|Z0:n)

Fig. 2: Example synthetic tracks with time-varying leadership;
Black dot denotes the predefined destination. solid lines are
the estimated tracks and pluses are observations.

Fig. 3: Estimated probability of leadership p(Ln|Z0:n); black
dotted line indicates the true leader Ln at each time step n.

at each time step n. The possible leadership structures of a
group of N objects are defined to include all subsets of the
set {1...N}, except for itself and the empty set. Hence, the
total number of the leadership structures will be 2N − 2. For
example, for dataset 1, all possible leadership structures are
listed in Table. I and the total number is 14. For dataset 2,
the total number of possible leadership structures increases to
254, and therefore would be valuable to assess the outcomes
of the applied inference algorithms under such conditions.

S1 S2 S3 S4 S5 S6 S7

1 2 3 4 {1,2} {1,3} {1,4}
S8 S9 S10 S11 S12 S13 S14

{2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4}

TABLE I: The list of leadership structures for dataset 1.

To visualise the performance of tracking and leadership
inference, we analyse one example track from dataset 1. The
observations and the estimated tracks of the four objects in the
group are shown in Fig. 2. The ground-truth and estimated
leadership probabilities p(Ln|Z0:n) from the optimal kernel
SMCMC sampler are depicted in Fig. 3. It clearly depicts
the ability of the proposed approach to effectively capture the
dynamic change of leadership pattern in a group over time.

Next, the average performance of SMCMC algorithms
(using the prior and optimal proposals), Gibbs sampler and
marginal particle filter (with prior and optimal proposals) are
presented. The metric utilised for measuring the leadership in-
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ference performance is the mean of the "correct rate" averaged
over 100 runs. The correct rate is calculated by using the MAP
principle as per: at each time step, we consider the inferred
leadership with the highest probability as the current output
leader, and then compare it with the ground truth; if they are
equal, we assume to obtain one correct estimation. For each
run, the final correct rate over 100 time steps is calculated
as the total number of correct estimations divided by 100.
The tracking performance is evaluated using the Root Means
Square Error (RMSE) averaged over the 100 independent runs.
Meanwhile, the computational complexity is also studied by
calculating the CPU time (System: Intel(R) Core(TM) i7-8550
CPU@1.80 GHz, 8 GB RAM) required at one time step in
each dataset and averaged over 100 Monte Carlo runs .

For dataset 1, Table II presents the mean of the correct
leader estimation rates of the five tested techniques averaged
across the 100 runs. It can be seen that all these examined
methods can reliably estimate the leadership state. Although
the difference is subtle, we can still observe that using the
optimal kernel, in both SMCMC and marginal particle filter,
deliver better results compared with using the prior proposal.
Overall, SMCMC methods outperform marginal particle filter
(except for the optimal kernel case, since this is statistically
equivalent in both cases, even though the algorithmic imple-
mentations are different, see Section IV). For the execution
times, all examined methods in the case of a four-object
group size can potentially output leadership inference results in
real-time with the testing system (assuming that the recorded
execution time is less than the duration between two successive
sensory observations). SMCMC using prior proposal has the
shortest execution time (i.e. lowest computational complexity)
and Gibbs the longest. Additionally, the mean of RMSE over
100 Monte Carlo runs are displayed in Table II. For models
that include the leadership pattern, we can see that all methods
show promising, nearly similar, tracking performance as we
adopt the Rao-Blackswellisation scheme. The marginal PF
with prior proposal exhibits a slight less accurate tracking
results due to its comparatively poorer estimation of the true
leadership state. In contrast, the model without considering
leadership structure has noticeably higher tracking RMSE.
This demonstrate that incorporating interaction among group
members enhances the achieved tracking accuracy.

For dataset 2, the overall performance is shown in Table
III. It can be noticed that the algorithms using the optimal
proposal have the highest correct rate. With the prior pro-
posal, the correct rate of SMCMC is substantially higher than
that delivered by the marginal particle filter. This illustrates
the SMCMC superiority in high dimension cases, i.e. more
scalable, and therefore we can conclude that the SMCMC
methods outperform the marginal particle filters. The run-
time grows markedly with the number of group members
for all the algorithms, with SMCMC using the prior proposal
having a significantly shorter execution time. This observation
is consistent with the analysis of the computational complexity
in Section IV where the SMCMC-prior method has a compu-
tational complexity of O(Np) compared with O(N2

p ) for all
the other techniques. Model without considering the leadership
pattern again has the largest mean of the tracking RMSE over

the 100 Monte Carlo runs.

TABLE II: Overall performance for dataset 1 over 100 runs.

Gibbs SMCMC Marginal PF without
Prior Optimal Prior Optimal leadership

Correct rate 0.87 0.85 0.87 0.79 0.87 -
Time (sec) 0.67 0.14 0.31 0.25 0.31 -
RMSE 0.27 0.27 0.27 0.30 0.27 0.67

TABLE III: Overall performance for dataset 2 over 100 runs.

Gibbs SMCMC Marginal PF without
Prior Optimal Prior Optimal leadership

Correct rate 0.78 0.76 0.79 0.65 0.79 -
Time (sec) 62.8 1.39 45.1 57.2 45.1 -
RMSE 0.20 0.20 0.20 0.21 0.20 0.35

B. Real Data

In this part, we only present the result from the proposed
SMCMC sampler with optimal kernel to two real animal
datasets, since the methods using optimal sampler have shown
a better performance with the synthetic data. It is noted that the
MPF sampler with the optimal kernel is statistically equivalent
to the SMCMC sampler with optimal kernel in our case.

TABLE IV: Overall tracking performance for two real scenar-
ios.

Dataset RMSE
with leadership without leadership

Pigeon flock 3.65 4.07
Fish school 2.71 2.96

1) Homing Pigeon Flock: Here we analyse a 1000-time-
step-segment flight of a flock of four homing pigeons during
a journey, reconstructed from the available high-precision
GPS data collected in [21]. The time interval between ob-
servations is 0.2s. The observations and estimated tracks of
the four pigeons are given in Fig. 4. It can be seen that
the flock trajectories are estimated accurately. Below, we
compare our methods that consider the leadership structure
with the standard CV model without any group interactions.
The RMSE results are shown in Table IV. It can be seen
that considering the leadership structure enhances the overall
tracking performance.

The estimated leadership of the flock data over 1000 time
steps is depicted in Fig. 5. The color bar ranging from white
to red indicates the probability of this pigeon being the leader
deduced at each time step. We can see that, despite assuming
that all the 14 leadership structures in S are possible, the most
probable leader in the homing pigeon flock is inferred as object
1 for the first 920 time steps; after the object 1 arrives at the
destination around time step 920, the object 2 takes the lead
for the following 80 time steps, leading the other pigeons to
their intended destination (i.e. home). Such result is consistent
with the dominance hierarchy studied in [21] about this pigeon
flock. Different from the method in [21], which determines the
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Fig. 4: Estimated Pigeons tracks; solid lines are estimations,
and pluses are the available observations. The black dot
denotes the home of pigeon flock

Fig. 5: The estimated probability of leadership in the homing
pigeon flock.

leadership hierarchy by direct calculation of the directional
correlation delay times, here we reveal the leadership pattern
by using Bayesian inference methods.

2) Fish school foraging scenario: The performance of the
introduced approach is further evaluated in a 50-time-step
video clip of a school of five golden shiners fish in [29]. The
video is recorded by a Sony EX1 video camera (1280 x 720
pixels) mounted above the fish tank at a frame rate of 60 Hz,
and then be pre-processed into a 2-dimensional position data.
A comparatively-small part of the fish are trained to possess
foraging ability; in other words, the trained fish will know the
location of the feeder and recognise the signal that there will
be food once the feeder’s light is on. The other fish in the group
are not informed of this foraging information. After the signal
of food is given, there will be around 10-time-step response
time for the trained fish to notice the light, and they will then
dash to the location of the feeder (destination). Meanwhile,
the other fish will follow the leaders to the intended endpoint
(food location). The video clip recorded here starts before any
visible response from the fish school is observed, and ends
when the first fish reached the feeder. It is noticeable that even
the fish have been trained, we still cannot confirm whether they
will successfully play the leadership role as the fish might be
ill-trained or for other reasons (e.g., the untrained fish cannot
follow the trained fish due to occlusion in vision).

In this experiment, both fish 1 and fish 2 are trained before
the experiment began, and this information is utilised as
ground truth for evaluating the effectiveness of our method.

Fig. 6: Estimated tracks of a fish school; solid lines are the
estimations, and pluses are observations. The black dot denotes
the feeder in the fish tank

Fig. 7: The estimated probability of leadership in the fish
school.

In performing tracking the leadership model is unaware that
fish 1 and fish 2 are leaders and the algorithm attempts to
determine this; however, the total number of trained fish in
the group is known a priori to be two. This prior information
implies that there are at most two leaders in this fish school.
Thus, the list of possible leadership structures is shortened
from 30 to 15, as displayed in Table V.

S1 S2 S3 S4 S5

1 2 3 4 5
S6 S7 S8 S9 S10

{1,2} {1,3} {1,4} {1,5} {2,3}
S11 S12 S13 S14 S15

{2,4} {2,5} {3,4} {3,5} {4,5}

TABLE V: The list of possible leadership structures

The observations and estimated tracks of this fish school
over 50 time steps are shown in Fig. 6. The black circle de-
notes the feeder’s location, i.e., the destination. It can be seen
that the proposed inference method can accurately estimate
the kinematic states of the fish school. Similarly, to show
the effectiveness of considering the leadership structure, we
compare our methods with standard CV model, and the RMSE
results are shown in Table IV. It can be seen that our proposed
model has a smaller RMSE value, which demonstrates its
enhanced tracking performance. From Fig. 6, we can also
observe that around respond time step 10, fast manoeuvres
happen where there are abrupt changes in the fish velocities.
The estimated probability of leadership in the fish school over
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50 time step is depicted in Fig. 7. We can see that before time
step 10, it provides little useful information about leadership
pattern in the fish school, which corresponds to the respond
time discussed before. After time step 10, fish 2 becomes
the most probable leader of the group, with the leadership
pattern changing to S6 between time step 16 and 20 when
fish 1 and 2 lead the group together. As the ground truth is
that fish 1 and 2 are the informed/trained fish, we can see
that the inferred leadership pattern is reasonable, which proves
that our proposed method is capable of capturing the dynamic
dominance hierarchy amongst the fish school.

VI. CONCLUSION

In this paper, we introduce a novel leader-follower model
to capture the dynamic interactions amongst groups of ob-
jects. Compared with previous models, the leadership structure
within the proposed formulation is significantly more flexible
in that not only the group leadership can change over time, but
also the number of group leaders. Additionally, we generalize
our behaviour model for each leader such that its motion can
be driven by reaching a final destination, which is commonly
in numerous applications and real-life scenarios. Under the
Bayesian inference framework, the group leadership state is
inferred online by a sequential Markov chain Monte Carlo
(SMCMC) algorithm, which is evaluated under different pro-
posals and also compared with the well-known particle filter
methods. The results presented demonstrate the effectiveness
of the proposed Bayesian inference framework, and its po-
tential applications in facilitating the understanding of animal
group behaviours. The work has various extensions including
the estimation of the group parameters, consideration of more
complex hierarchical structures in larger groups/networks, and
treating the data association step for group tracking scenarios
when the objects and measurements assignments are unknown.
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