1,917 research outputs found
Biosurfactant as the next antimicrobial agents in pharmaceutical applications
The number of patients with antimicrobial resistance is growing as a result of new emerging microbes or overuse of antibiotics. A new substitute to the existing antimicrobial agents is important in time to come to control the mortality rate in the global population. Natural substances, like biosurfactants or commonly known as microbial surfactants could be a potential antimicrobial agent to medical personnel’s consideration as some biosurfactants exhibits antimicrobial activity. Hence, this paper will briefly highlight some of the findings from contemporary researchers who have tested different biosurfactants for potential antimicrobial activity
A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems
Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications
Stress transfer quantification in gelatin-matrix natural composites with tunable optical properties
© 2015 American Chemical Society.This work reports on the preparation and characterization of natural composite materials prepared from bacterial cellulose (BC) incorporated into a gelatin matrix. Composite morphology was studied using scanning electron microscopy and 2D Raman imaging revealing an inhomogeneous dispersion of BC within the gelatin matrix. The composite materials showed controllable degrees of transparency to visible light and opacity to UV light depending on BC weight fraction. By adding a 10 wt % fraction of BC in gelatin, visible (= 550 nm) and UV (= 350 nm) transmittances were found to decrease by ∼35 and 40%, respectively. Additionally, stress transfer occurring between the gelatin and BC fibrils was quantified using Raman spectroscopy. This is the first report for a gelatin-matrix composite containing cellulose. As a function of strain, two distinct domains, both showing linear relationships, were observed for which an average initial shift rate with respect to strain of -0.63 ± 0.2 cm-1%-1 was observed, followed by an average shift rate of -0.25 ± 0.03 cm-1%-1. The average initial Raman band shift rate value corresponds to an average effective Youngs modulus of 39 ± 13 GPa and 73 ± 25 GPa, respectively, for either a 2D and 3D network of BC fibrils embedded in the gelatin matrix. As a function of stress, a linear relationship was observed with a Raman band shift rate of -27 ± 3 cm-1GPa-1. The potential use of these composite materials as a UV blocking food coating is discussed
CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments
We study electroweak baryogenesis and electric dipole moments in the presence
of the two leading-order, non-renormalizable operators in the Higgs sector of
the MSSM. Significant qualitative and quantitative differences from MSSM
baryogenesis arise due to the presence of new CP-violating phases and to the
relaxation of constraints on the supersymmetric spectrum (in particular, both
stops can be light). We find: (1) spontaneous baryogenesis, driven by a change
in the phase of the Higgs vevs across the bubble wall, becomes possible; (2)
the top and stop CP-violating sources can become effective; (3) baryogenesis is
viable in larger parts of parameter space, alleviating the well-known
fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole
moments should be measured if experimental sensitivities are improved by about
one order of magnitude.Comment: 33 pages, 6 figure
Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh
Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide
A closed-loop EKF and multi-failure diagnosis approach for cooperative GNSS positioning
Current cooperative positioning with Global Navigation Satellite System (GNSS) for connected vehicle application mainly uses pseudorange measurements. However the positioning accuracy offered cannot meet the requirements for lane-level positioning, collision avoidance and future automatic driving, which needs real-time positioning accuracy of better than 0.5m. Furthermore, there is an apparent lack of research into the integrity issue for these new applications under emerging driverless vehicle applications. In order to overcome those problems, a new Extended Kalman Filter (EKF) and a multi-failure diagnosis algorithm are developed to process both GNSS pseudorange and carrier phase measurements. We first introduce a new closed-loop EKF with partial ambiguity resolution (PAR) as feedback to address the low accuracy issue. Then a multi-failure diagnosis algorithm is proposed to improve integrity and reliability. The core of this new algorithm includes using Carrier phase based Receiver Autonomous Integrity Monitoring (CRAIM) method for failure detection, and the double extended w-test detectors to identify failure. A cooperative positioning experiment was carried out to validate the proposed method. The results show that the proposed closed-loop EKF can provide highly accurate positioning, and the multi-failure diagnosis method is effective in detecting and identifying failures for both code and carrier phase measurements
Systematic review of communication technologies to promote access and engagement of young people with diabetes into healthcare
Background: Research has investigated whether communication technologies (e.g. mobile telephony, forums,
email) can be used to transfer digital information between healthcare professionals and young people who live
with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on
communication.
Methods: Nine electronic databases were searched. Technologies were described and a narrative synthesis of all
studies was undertaken.
Results: Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five
categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony
(n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n =
10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the
intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication
technologies increased the frequency of contact between patient and healthcare professional. Findings were
inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was
available concerning behavioural and care coordination outcomes, although improvement in quality of life, patientcaregiver
interaction, self-care and metabolic transmission were reported for some communication technologies.
Conclusions: The breadth of study design and types of technologies reported make the magnitude of benefit and
their effects on health difficult to determine. While communication technologies may increase the frequency of
contact between patient and health care professional, it remains unclear whether this results in improved
outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness
and cost effectiveness of increasing the use of communication technologies between young people and
healthcare professionals
Structure-Function Analysis of Diacylglycerol Acyltransferase Sequences from 70 Organisms
<p>Abstract</p> <p>Background</p> <p>Diacylglycerol acyltransferase families (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Understanding the roles of DGATs will help to create transgenic plants with value-added properties and provide clues for therapeutic intervention for obesity and related diseases. The objective of this analysis was to identify conserved sequence motifs and amino acid residues for better understanding of the structure-function relationship of these important enzymes.</p> <p>Results</p> <p>117 DGAT sequences from 70 organisms including plants, animals, fungi and human are obtained from database search using tung tree DGATs. Phylogenetic analysis separates these proteins into DGAT1 and DGAT2 subfamilies. These DGATs are integral membrane proteins with more than 40% of the total amino acid residues being hydrophobic. They have similar properties and amino acid composition except that DGAT1s are approximately 20 kDa larger than DGAT2s. DGAT1s and DGAT2s have 41 and 16 completely conserved amino acid residues, respectively, although only two of them are shared by all DGATs. These residues are distributed in 7 and 6 sequence blocks for DGAT1s and DGAT2s, respectively, and located at the carboxyl termini, suggesting the location of the catalytic domains. These conserved sequence blocks do not contain the putative neutral lipid-binding domain, mitochondrial targeting signal, or ER retrieval motif. The importance of conserved residues has been demonstrated by site-directed and natural mutants.</p> <p>Conclusions</p> <p>This study has identified conserved sequence motifs and amino acid residues in all 117 DGATs and the two subfamilies. None of the completely conserved residues in DGAT1s and DGAT2s is present in recently reported isoforms in the multiple sequences alignment, raising an important question how proteins with completely different amino acid sequences could perform the same biochemical reaction. The sequence analysis should facilitate studying the structure-function relationship of DGATs with the ultimate goal to identify critical amino acid residues for engineering superb enzymes in metabolic engineering and selecting enzyme inhibitors in therapeutic application for obesity and related diseases.</p
Non-invasive monitoring of Streptococcus pyogenes vaccine efficacy using biophotonic imaging.
Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI) can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 10(5) bacterial colony forming units (CFU) in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines
- …