1,115 research outputs found

    Superfluidity of a perfect quantum crystal

    Full text link
    In recent years, experimental data were published which point to the possibility of the existence of superfluidity in solid helium. To investigate this phenomenon theoretically we employ a hierarchy of equations for reduced density matrices which describes a quantum system that is in thermodynamic equilibrium below the Bose-Einstein condensation point, the hierarchy being obtained earlier by the author. It is shown that the hierarchy admits solutions relevant to a perfect crystal (immobile) in which there is a frictionless flow of atoms, which testifies to the possibility of superfluidity in ideal solids. The solutions are studied with the help of the bifurcation method and some their peculiarities are found out. Various physical aspects of the problem, among them experimental ones, are discussed as well.Comment: 24 pages with 2 figures, version accepted for publication in Eur.Phys.J.

    On the nature of ferromagnetism in diluted magnetic semiconductors: GaAs:Mn, GaP:Mn

    Full text link
    A microscopic Hamiltonian for interacting manganese impurities in diluted magnetic semiconductors (DMS) is derived. It is shown that in p -type III-V DMS the indirect exchange between Mn impurities has similarities with the Zener mechanism in transition metal oxides. Here the mobile holes and localized states near the top of the valence band play the role of unoccupied oxygen orbitals which induce ferromagnetism. The Curie temperature estimated from the proposed kinematic exchange agrees with recent experiments on GaAs:Mn. The model is also applicable to the GaP:Mn system.Comment: 10 pages, 3 figures. Submitted to Europhysics Letters, June 25, 200

    Phase Transitions in One-Dimensional Truncated Bosonic Hubbard Model and Its Spin-1 Analog

    Full text link
    We study one-dimensional truncated (no more than 2 particles on a site) bosonic Hubbard model in both repulsive and attractive regimes by exact diagonalization and exact worldline Monte Carlo simulation. In the commensurate case (one particle per site) we demonstrate that the point of Mott-insulator -- superfluid transition, (U/t)c=0.50±0.05(U/t)_c=0.50\pm 0.05, is remarkably far from that of the full model. In the attractive region we observe the phase transition from one-particle superfluid to two-particle one. The paring gap demonstrates a linear behavior in the vicinity of the critical point. The critical state features marginal response to the gauge phase. We argue that the two-particle superfluid is a macroscopic analog of a peculiar phase observed earlier in a spin-1 model with axial anisotropy.Comment: Revtex, 5 pages, 9 figures. Submitted to Phys. Rev.

    Theoretical Study of Electron-Phonon Interaction in ZrB2 and TaB2

    Full text link
    Using full-potential, density-functional-based methods we have studied electron-phonon interaction in ZrB2 and TaB2 in P6/mmm crystal structure. Our results for phonon density of states and Eliashberg function show that the electron-phonon coupling in ZrB2 is much weaker than in TaB2. In particular, we find that the average electron-phonon coupling constant \lambda is equal to 0.14 for ZrB2 and 0.72 for TaB2. The solutions of the isotropic Eliashberg gap equation indicate no superconductivity for ZrB2 but a superconducting transition temperature Tc of around 12 K for TaB2 with \mu* ~0.16.Comment: Increased q points from 12 to 28, added 3 figs and a section on convergence analysi

    Nonlinear spinor field in cosmology

    Full text link
    Within the scope of Bianchi type VI (BVI) model the self-consistent system of nonlinear spinor and gravitational fields is considered. Exact self-consistent solutions to the spinor and gravitational field equations are obtained for some special choice of spatial inhomogeneity and nonlinear spinor term. The role of inhomogeneity in the evolution of spinor and gravitational field is studied. Oscillatory mode of expansion of the BVI universe is obtained for some special choice of spinor field nonlinearity.Comment: RevTex4, 19 pages, 4 figure

    Relation between CPT Violation in Neutrino masses and mixings

    Full text link
    The neutrino parameters determined from the solar neutrino data and the anti-neutrino parameters determined from KamLAND reactor experiment are in good agreement with each other. However, the best fit points of the two sets differ from each other by about 10510^{-5} eV2^2 in mass-square differenc and by about 22^\circ in the mixing angle. Future solar neutrino and reactor anti-neutrino experiments are likely to reduce the uncertainties in these measurements. This, in turn, can lead to a signal for CPT violation in terms a non-zero difference between neutrino and anti-neutrino parameters. In this paper, we propose a CPT violating mass matrix which can give rise to the above differences in both mass-squared difference and mixing angle and study the constraints imposed by the data on the parameters of the mass matrix.Comment: 10page

    Point-contact Andreev-reflection spectroscopy in ReFeAsO_{1-x}F_x (Re = La, Sm): Possible evidence for two nodeless gaps

    Full text link
    A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1-xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection experiments performed on LaFeAsO1-xFx (La-1111) polycrystals with Tc ~ 27 K and SmFeAsO0.8F0.2 (Sm-1111) ones with Tc ~ 53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder-Tinkham-Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1-xFx (Re = La, Sm): a small gap, Delta1, smaller than the BCS value (2Delta1/kBTc ~ 2.2 - 3.2) and a much larger gap Delta2 which gives a ratio 2Delta2/kBTc ~ 6.5 - 9. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc. The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive up to T* ~ 140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.Comment: 10 pages, 7 color figures, Special Issue of Physica C on Superconducting Pnictide

    Effective index of refraction, optical rotation, and circular dichroism in isotropic chiral liquid crystals

    Get PDF
    This paper concerns optical properties of the isotropic phase above the isotropic-cholesteric transition and of the blue phase BP III. We introduce an effective index, which describes spatial dispersion effects such as optical rotation, circular dichroism, and the modification of the average index due to the fluctuations. We derive the wavelength dependance of these spatial dispersion effects quite generally without relying on an expansion in powers of the chirality and without assuming that the pitch of the cholesteric PP is much shorter than the wavelength of the light λ\lambda, an approximation which has been made in previous studies of this problem. The theoretical predictions are supported by comparing them with experimental spectra of the optical activity in the BP III phase.Comment: 15 pages and 7 figures. Submitted to PR

    Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimentions

    Full text link
    We develop the BRST approach to Lagrangian formulation for massive higher integer spin fields on a flat space-time of arbitrary dimension. General procedure of gauge invariant Lagrangian construction describing the dynamics of massive bosonic field with any spin is given. No off-shell constraints on the fields (like tracelessness) and the gauge parameters are imposed. The procedure is based on construction of new representation for the closed algebra generated by the constraints defining an irreducible massive bosonic representation of the Poincare group. We also construct Lagrangian describing propagation of all massive bosonic fields simultaneously. As an example of the general procedure, we derive the Lagrangians for spin-1, spin-2 and spin-3 fields containing total set of auxiliary fields and gauge symmetries of free massive bosonic higher spin field theory.Comment: 27 page
    corecore