2,490 research outputs found

    Hot Topics in Ultra-Peripheral Collisions

    Full text link
    Ultra-peripheral collisions of relativistic heavy ions involve long-ranged electromagnetic interactions at impact parameters too large for hadronic interactions to occur. The nuclear charges are large; with the coherent enhancement, the cross sections are also large. Many types of photonuclear and purely electromagnetic interactions are possible. We present here an introduction to ultra-peripheral collisions, and present four of the most compelling physics topics. This note developed from a discussion at a workshop on ``Electromagnetic Probes of Fundamental Physics,'' in Erice, Italy, Oct. 16-21, 2001.Comment: 7 pages, with 3 figures. This developed from a discussion at the workshop on "Electromagnetic Probes of Fundamental Physics," Oct. 16-21, Erice, Ital

    Photoproduction at collider energies: from RHIC and HERA to the LHC

    Get PDF
    We present the mini-proceedings of the workshop on ``Photoproduction at collider energies: from RHIC and HERA to the LHC'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 2007. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-xx QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} \oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm \oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Centrality and sNNDependenceofthe\sqrt{s_{NN}} Dependence of the dE_{T}/d\etaand and dN_{ch}/d\eta$ in Heavy Ion Collisions at Mid-Rapidity

    Full text link
    The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au + Au collisions at sNN\sqrt{s_{NN}} = 19.6, 130, 62.4 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sNN\sqrt{s_{NN}} dependence of dET/dηdE_{T}/d\eta and dNch/dηdN_{ch}/d\eta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dET/dηdE_{T}/d\eta and dNch/dηdN_{ch}/d\eta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sNN\sqrt{s_{NN}}. A survey of comparisons between the data and available theoretical models is also presented.Comment: Proccedings of the Workshop: Focus on Multiplcity at Bari, Italy, June 17-19,2004. To be submitted to the Jornal of Physics, "Conference series". Includes: 20 Pages, 15 figures, 3 Tables, 80 Referencie

    Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized pp++AA collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized pp++pp collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in pp++pp collisions predicts only a moderate atomic-mass-number (AA) dependence. In contrast, the asymmetries observed at RHIC in pp++AA collisions showed a surprisingly strong AA dependence in inclusive forward neutron production. The observed asymmetry in pp++Al collisions is much smaller, while the asymmetry in pp++Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed AA dependence.Comment: 315 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore