18 research outputs found

    Expanded Bed Adsorption Of Bromelain (e.c. 3.4.22.33) From Ananas Comosus Crude Extract

    Get PDF
    This work focuses on the adsorption of Bromelain in expanded bed conditions, such as the adsorption kinetics parameters. The adsorption kinetics parameters showed that after 40 minutes equilibrium was achieved and maximum adsorption capacity was 6.11 U per resin mL. However, the maximum adsorption capacity was only determined by measuring the adsorption isotherm. Only by the Langmuir model the maximum adsorption capacity, Qm, and dissociation constant, kd, values could be estimated as 9.18 U/mL and 0.591, respectively, at 25°C and 0.1 mol/L phosphate buffer pH 7.5. A column made of glass with an inner diameter of 1 cm was used for the expanded bed adsorption (EBA). The residence time was reduced 10 fold by increasing the expansion degree 2.5 times; nonetheless, the plate number (N) value was reduced only 2 fold. After adsorption, the bromelain was eluted in packed bed mode, with a downward flow. The purification factor was about 13 fold and the total protein was reduced 4 fold. EBA showed to be feasible for purification of bromelain.261149157Amersham Pharmacia Biotech. EBA Handbook: Principles and Methods. Uppsala, ISBN 91-630-5519-8 (1997)Anspach, F.B., Curbelo, D., Hartman, R., Garke, G., Deckwer, W.D., Expanded-bed chromatography in primary protein purification (1999) J. Chromatogr. A, 865, p. 129Bruce, L.J., Chase, H.A., Hydrodynamics and adsorption behaviour within an expanded bed adsorption column studied using in-bed sampling (2001) Chem. Eng. Sci, 56, p. 3149Camprubi, S., Bruguera, M., Canalias, F., Purification of recombinant histidine-tag streptolysin O using immobilized metal affinity expanded bed adsorption (IMA-EBA). International (2006) J. Biol. Macromolecules, 38, pp. 134-139Chang, Y.K., McCreath, G.E., Chase, H.A., (1994) Advances in Bioprocess Engineering, p. 519. , Galindo, E, Ramirez, O.T, Eds, Kluwer Academics Publisher: Netherlands, pChase, H.A., Purification of proteins by adsorption chromatography in expanded beds (1994) Trends Biotechnol, 12, p. 296Dainiak, M.B., Galaev, I.Y., Matiasson, B., Direct capture of product from fermentation broth using a cell-repelling ion exchanger (2002) J. Chromatogr. A, 942, pp. 123-131Deutscher, M.P., Guide to protein purification (1990) Method. Enzymol, p. 182Fernandez-Lahore, H.M., Lin, D.-Q., Hubbuch, J.J., Kula, M.R., Thommes, J., The use of ionselective electrodes for evaluating residence time distributions in expanded bed adsorption systems (2001) Biotechnol. Progr, 17, pp. 1128-1136Gaspani, L., Limiroli, E., Ferrario, P., Bianchi, M., In vivo and in vitro effects of bromelain on PGE(2) and SP concentrations in the inflammatory exudate in rats (2002) Pharmacology, 65, pp. 83-86Haq, S.K., Rasheedi, S., Khan, R.H., Characterization of a partially folded intermediate of stem bromelain at low pH (2002) Eur. J. Biochem, 269, pp. 47-52Harrach, T., Eckert, K., Maurer, H.R., Machleidt, I., Machleidt, W., Nuck, R., Isolation and characterization of two forms of an acidic bromelain stem proteinase (1998) J. Protein Chem, 17, pp. 351-361Hatano, K., Sawano, Y., Tanokura, M., Structure-function relationship of bromelain isoinhibitors from pineapple stem (2002) Biol. Chem, 383, pp. 1151-1156Hatano, K., Tanokura, M., Takahashi, K., The amino acid sequences of isoforms of the bromelain inhibitor from pineapple stem (1998) J. Biochem, 124, pp. 457-461Hjorth, R., Expanded bed adsorption in industrial bioprocessing: Recent developments (1997) Trends Biotechnol, 15, p. 230Hochstrasser, D.F., Patchornik, A., Merril, C.R., Development of Polyacrylamide gels that improve the separation of proteins and their detection by silver staining (1998) Analyt. Biochem, 173, pp. 412-423Hochstrasser, D.F., Merril, C.R., Catalysts' for Polyacrylamide gel polymerization and detection of proteins by silver staining (1998) Appl. Theor. Electrophoresis, 1, pp. 35-40Hebbar, H.U., Sumana, B., Raghavarao, K.S.M.S., Use of reverse micellar systems for the extraction and purification of bromelain term from pineapple wastes (2008) Bioresource Technology, 99, pp. 4896-4902Khan, R.H., Rasheedi, S., Haq, S.K., Effect of pH, temperature and alcohols on the stability of glycosylated and deglycosylated stem bromelain (2003) J. Biosci, 28, pp. 709-714Kim, M. H., Kim, H. K., Lee, J. K., Park, S. Y., Oh, T. K., Thermostable lipase of Bacillus stearothermophilus, high level production, purification and calciumdependent thermostability. Korea Res. Inst. Biosci. Biotechnol. 64:280-286 (2000)Kordel, M., Hofmann, B., Schomburg, D., Schimid, R.D., Extracelluar lipase of Pseudomonas sp. strain ATCC 21808: Purification, characterization, crystallization and preliminary X-ray diffraction data (1991) J. Bacteriol, 173, pp. 4836-4841Kunitz, M., Crystalline soybean trypsin inhibitor: II general properties (1974) J. Gen. Physiol, 30, pp. 291-310Lali, A.M., Khare, A.S., Joshi, J.B., Behaviour of solid particles in viscous non-newtonian solutions: Settling velocity, wall effects and bed expansion in solid-liquid fluidized beds (1989) Powder Tech, 57, pp. 39-50Maurer, H.R., Bromelain: Biochemistry, pharmacology and medical use (2001) Cell. Mol. Life Sci, 58, pp. 1234-1245Mullick, A., Flickinger, M.C., Expanded bed adsorption of human serum albumin from very dense saccharomyces cerevesiae suspensions on fluoride-modified zirconia (1999) Biotechnol. Bioeng, 65, pp. 282-290Murachi, T., Bromelain enzymes (1976) Methods Enzymol, 45, pp. 475-485Ota, S., Horie, K., Hagino, F., Hashimoto, C., Date, H., Fractionation and some properties of the proteolytically active components of bromelains in the stem and the fruit of the pineapple plant (1972) J. Biochem, 71, pp. 817-830Rasheedi, S., Haq, S.K., Khan, R.H., Guanidine hydrochloride denaturation of glycosylated and deglycosylated stem bromelain (2003) Biochemistry, 68, pp. 1097-1100Roy, I., Pai, A., Lali, A., Gupta, M.N., Comparison of batch, packed bed and expanded bed purification of A. niger cellulose beads (1999) Bioseparation, 8, pp. 317-326Santos, E.S., Guirardello, R., Franco, T.T., Distributor Effect on Expanded Bed Adsorption (2000) International Conference IEX 2000 (Ion Exchange at the Millennium), , Cambridge/UKSantos, E.S., Guirardello, R., Franco, T.T., Preparative chromatography of xylanase using expanded bed adsorption (2002) J. Chrom. A, 944, pp. 217-224Silveira, E., (2007) Purificação e caracterização de bromelina a partir do extrato bruto de Ananas comosus por adsorção em leito expandido, , Dissertação de Mestrado. Faculdade de Engenharia Química: UnicampSilverstein, R.M., Kezdy, F.J., Characterization of the pineapple stem proteases (bromelain) (1975) Arch. Biochem.Biophys, 167, pp. 678-686Suh, H.J., Lee, H., Cho, H.Y., Yang, H.C., Purification and characterization of bromelain isolated from pineapple (1992) Han'guk Nonghwa Hakhoechi, 35, pp. 300-307Takahashi, N., Yasuda, Y., Goto, K., Miyake, T., Murachi, T., Multiple molecular forms of stem bromelain. Isolation and characterization of two closely related components, SB1 and SB2 (1973) J. Biochem, 74, pp. 355-373Tan, Y.P., Ling, T.C., Tan, W.S., Yusoff, K., Tey, B.T., Purification of recombinant nucleocapsid protein of Newcastle disease virus from unclarifled feedstock using expanded bed adsorption chromatography (2006) Prot. Expr. Purif, 46, pp. 114-121Thömmes, J., Fluidized bed adsorption as a primary recovery step in protein purification (1997) Adv. Biochem. Eng, 58, p. 185Toledo, A.L., Severo, J.J.B., Souza, R.R., Campos, E.S., Santana, J.C.C., Tambourgi, E.B., Purification by expanded bed adsorption and characterization of an a-amylase FORILASE NTL®from A. niger (2006) J. Chrom. B, 846, pp. 51-56Trinh, L., Phue, J.-N., Jaluria, P., Tsai, C.W., Narum, D.L., Shiloach, J., Screen-less expanded bed column: New approach for the recovery and purification of a malaria transmission blocking vaccine candidate from Pichia pastoris (2006) Biotechnol. Lett, 28, pp. 951-958Walter, H. E., Proteinases: methods with hemoglobin, casein, and azocoll as substrates. Pp. 270-277 in Methods of Enzymatic Analysis, 5, H.U. Bergmeyer, ed. Verlag Chemie, Weinheim, Germany (1984)Wang, S.-L., Peng, J.-H., Liang, T.-W., Liu, K.-C., Purification and characterization of a chitosanase from Serratia marcescens TKU011 (2008) Carbohydrate Research, 343, pp. 1316-1323Wharton, C.W., The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-L-phenylalanyl-L-serine methyl ester (1974) Biochem. J, 143, pp. 575-586Wheelwright, S.M., (1994) Protein purification: Design and scale up of downstream processing, , Munich: Hanser PublishersYamamoto, S., Okamoto, A., Walter, P., Effects of adsorbent properties on zone spreading in expanded bed chromatography (2001) Bioseparation, 1, pp. 1-10Yun, J.X., Yao, S.-J., Lin, D.-Q., Lu, M.-H., Zhao, W.-T., Modeling axial distributions of adsorbent particle size and local voidage in expanded bed (2004) Chem. Eng. Sci, 59, p. 449Yun, X.L., Lin, D.-Q., Lu, M.-H., Zhong, L.-N., Yao, S.-L., Measurement and modeling of axial distribution of adsorbent particles in expanded bed: Taking into account the particle density difference (2004) Chem. Eng. Sci, 59, p. 587

    N–O bearing molecules produced by radiolysis of N2O and N2O:CO2 ices

    No full text
    International audienceN2O and CO2 can be formed in the interstellar space and in ices on the surface of outer solar system bodies, such as Pluto and Triton. Energetic ions can simulate the energy transfer processes that occur by cosmic ray irradiation of interstellar ices, comets, and icy solar system bodies. Proceeding systematic research, pure nitrous oxide (N2O) ice, and nitrous oxide and carbon dioxide (CO2) ice mixture were irradiated at 11 K with MeV-nitrogen (N+) and -xenon (Xe23+) ion beams. The chemical and physical effects induced by ion irradiation on the N2O ice and the N2O:CO2 ice mixture are compared. The formation and dissociation cross sections scale with the electronic stopping power (Se) roughly as σ ∼ a Sen, where n ∼ 3/2. The n power law is helpful for predicting the N2O formation and dissociation cross-sections for other ion beam projectiles and energies; these predictions will allow estimating the effects of the entire cosmic ray radiation field

    Radiolysis of NH3:CO ice mixtures – implications for Solar system and interstellar ices

    No full text
    International audienceExperimental results on the processing of NH3:CO ice mixtures of astrophysical relevance by energetic (538 MeV 64 Ni 24+) projectiles are presented. NH 3 and CO are two molecules relatively common in interstellar medium and Solar system; they may be precursors of amino acids. 64 Ni ions may be considered as representative of heavy cosmic ray analogues. Laboratory data were collected using mid-infrared Fourier transform spectroscopy and revealed the formation of ammonium cation (NH + 4), cyanate (OCN −), molecular nitrogen (N 2), and CO 2. Tentative assignments of carbamic acid (NH 2 COOH), formate ion (HCOO −), zwitterionic glycine (NH + 3 CH 2 COO −), and ammonium carbamate (NH + 4 NH 2 COO −) are proposed. Despite the confirmation on the synthesis of several complex species bearing C, H, O, and N atoms, no NO bearing species was detected. Moreover, parameters relevant for computational astrophysics, such as destruction and formation cross-sections, are determined for the precursor and the main detected species. Those values scale with the electronic stopping power (S e) roughly as σ ∼ a S n e , where n ∼ 3/2. The power law is helpful for predicting the CO and NH 3 dissociation and CO 2 formation cross-sections for other ions and energies; these predictions allow estimating the effects of the entire cosmic ray radiation field

    Destruction of CO ice and formation of new molecules by irradiation with 28 keV O6+ ions

    No full text
    International audienceThe effect of solar wind on cometary ice was studied by using oxygen ions with energy near to that corresponding to their maximum abundance in space for bombarding CO ice. This gas was condensed on a CsI substrate at 14 K and irradiated by 28 keV 18O6+ ions up to a final fluence of 1.3 x 1016 cm-2. We have used a methodology in which the sputtering yields, the destruction rate of CO, and the rate of formation of new molecular species are determined by Fourier transform infrared spectroscopy (FTIR). In the current experiment, the condensation of a thin water ice film has prevented the CO sputtering. Quantities such as the dissociation yield, Yd (the number of ice molecules destroyed or dissociated per projectile impact), and the formation yield, Yf (the number of daughter molecules of a given species formed per projectile) are found to be more appropriate and useful than using an integrated or average cross section, since the projectiles are slowing down in the ice from their initial energy until zero velocity (implantation)

    Swift heavy ion modifications of astrophysical water ice

    No full text
    International audienceIn the relatively shielded environments provided by interstellar dense clouds in our Galaxy, infraredastronomical observations have early revealed the presence of low temperature (10–100 K) ice mantlescovering tiny grain ‘‘cores” composed of more refractory material. These ices are of specific interestbecause they constitute an interface between a solid phase under complex evolution triggered by energeticprocesses and surface reactions, with a rich chemistry taking place in the gas phase. The interstellarice mantles present in these environments are immersed, in addition to other existing radiations fields, ina flux of cosmic ray particles that can produce new species via radiolysis processes, but first affects theirstructure, which may change and also induces desorption of molecules and radicals from these grains.Theses cosmic rays are simulated by swift ions in the laboratory for a better understanding of astrophysicalprocesses
    corecore