5,598 research outputs found
Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4 signalling axis
Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas
The influence of the dispersion method on the electrical properties of vapor-grown carbon nanofiber/epoxy composites
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity
Field Theory for a Deuteron Quantum Liquid
Based on general symmetry principles we study an effective Lagrangian for a
neutral system of condensed spin-1 deuteron nuclei and electrons, at
greater-than-atomic but less-than-nuclear densities. We expect such matter to
be present in thin layers within certain low-mass brown dwarfs. It may also be
produced in future shock-wave-compression experiments as an effective fuel for
laser induced nuclear fusion. We find a background solution of the effective
theory describing a net spin zero condensate of deuterons with their spins
aligned and anti-aligned in a certain spontaneously emerged preferred
direction. The spectrum of low energy collective excitations contains two spin
waves with linear dispersions -- like in antiferromagnets -- as well as gapped
longitudinal and transverse modes related to the Meissner effect -- like in
superconductors. We show that counting of the Nambu-Goldstone modes of
spontaneously broken internal and space-time symmetries obeys, in a nontrivial
way, the rules of the Goldstone theorem for Lorentz non-invariant systems. We
discuss thermodynamic properties of the condensate, and its potential
manifestation in the low-mass brown dwarfs.Comment: 19 LaTeX pages; v2: 2 refs added, JHEP versio
Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars
A knowledge of stellar ages is crucial for our understanding of many
astrophysical phenomena, and yet ages can be difficult to determine. As they
become older, stars lose mass and angular momentum, resulting in an observed
slowdown in surface rotation. The technique of 'gyrochronology' uses the
rotation period of a star to calculate its age. However, stars of known age
must be used for calibration, and, until recently, the approach was untested
for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for
stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for
old field stars whose ages have been determined with asteroseismology. The data
for the cluster agree with previous period-age relations, but these relations
fail to describe the asteroseismic sample. Here we report stellar evolutionary
modelling, and confirm the presence of unexpectedly rapid rotation in stars
that are more evolved than the Sun. We demonstrate that models that incorporate
dramatically weakened magnetic braking for old stars can---unlike existing
models---reproduce both the asteroseismic and the cluster data. Our findings
might suggest a fundamental change in the nature of ageing stellar dynamos,
with the Sun being close to the critical transition to much weaker magnetized
winds. This weakened braking limits the diagnostic power of gyrochronology for
those stars that are more than halfway through their main-sequence lifetimes.Comment: 25 pages, 3 figures in main paper, 6 extended data figures, 1 table.
Published in Nature, January 2016. Please see https://youtu.be/O6HzYgP5uyc
for a video description of the resul
Evaluation of Yeasts and Yeast Products in Larval and Adult Diets for the Oriental Fruit Fly, Bactrocera dorsalis, and Adult Diets for the Medfly, Ceratitis capitata, and the Melon Fly, Bactrocera curcurbitae
Several yeasts and yeast products were tested in adult diets for the medfly Ceratitis capitata (Wiedemann), oriental fruit fly Bactrocera dorsalis (Hendel), and melon fly, Bactrocera curcurbitae (Coquillett) (Diptera: Tephritidae) and in larval liquid diet for mass-rearing B. dorsalis. Three hydrolyzed brewer's yeasts (FNILS65, FNI200 and FNI210), one glutamine enriched yeast (GSH), one vitamin-enriched yeast (RDA500), Korea yeast, whole cell yeasts, and combinations of them were evaluated. Adult flies fed on a diet with FNI210FNI210 + GSH and RDA500 produced the highest number of eggs in all three tested fruit fly species. However, no significant difference was seen in egg hatch from flies fed on these diets with yeast in comparison to the control standard diet. When these yeasts were incorporated into a larval liquid diet with wheat germ oil, FNI200 and FNIL65 showed significantly higher pupal recovery than those from FNI210 and better adult flying and mating than those from Korea yeast. Glutamine enriched yeast enhanced fly performance, especially with FNI200 + GSH and FNILS65 + GSH, but not vitamin enriched yeast. Among the larvae reared with FNI200 + GSH, FNILS65 + GSH and torula yeast, those reared in FNILS65 + GSH diet with wheat germ oil developed the best. In order to select the most cost-effective yeast for liquid diet, FNILS65 + GSH and wheat germ oil was combined with whole cell yeast (LBI2240 series) and compared to the control diet (conventional mill feed diet currently used in the rearing facility). A ratio of 3:1 of LBI2240 and FNILS65 + wheat germ oil was selected as the most effective yeast for oriental fruit fly liquid larval diet based on cost and performance parameters
Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data
The Eurasian badger (
Meles meles
) is a facultatively social carnivore that shows only rudimentary
co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence
and limited genetic data have suggested that more than one female may breed in a
social group. We combine pregnancy detection by ultrasound and microsatellite locus
scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to
demonstrate that multiple females reproduce within a social group. We found that at least
three of seven potential mothers reproduced in a group that contained 11 reproductive age
females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity
levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger
Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage
20 páginas, 4 figuras, 3 tablas y 7 tablas en material suplementario.Snake venom hemorrhagic metalloproteinases (SVMPs) of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.This work was performed in partial fulfillment of the requirements for the PhD degree for Cristina Herrera at Universidad de Costa Rica.Peer reviewe
Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient
Background: Investigation of the functioning of the brain in living systems
has been a major effort amongst scientists and medical practitioners. Amongst
the various disorder of the brain, epilepsy has drawn the most attention
because this disorder can affect the quality of life of a person. In this paper
we have reinvestigated the EEGs for normal and epileptic patients using
surrogate analysis, probability distribution function and Hurst exponent.
Results: Using random shuffled surrogate analysis, we have obtained some of
the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev
E 2001, 64:061907], for the epileptic patients during seizure. Probability
distribution function shows that the activity of an epileptic brain is
nongaussian in nature. Hurst exponent has been shown to be useful to
characterize a normal and an epileptic brain and it shows that the epileptic
brain is long term anticorrelated whereas, the normal brain is more or less
stochastic. Among all the techniques, used here, Hurst exponent is found very
useful for characterization different cases.
Conclusions: In this article, differences in characteristics for normal
subjects with eyes open and closed, epileptic subjects during seizure and
seizure free intervals have been shown mainly using Hurst exponent. The H shows
that the brain activity of a normal man is uncorrelated in nature whereas,
epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis,
Hurst exponent. 9 page
- …