14 research outputs found

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape

    CASTLEGUARD : anonymised data streams with guaranteed differential privacy

    Get PDF
    Data streams are commonly used by data controllers to outsource the processing of real-time data to third-party data processors. Data protection legislation and best practice in data management support the view that data controllers are responsible for providing a guarantee of privacy for user data contained within published data streams. Continuously Anonymising STreaming data via adaptive cLustEring (CASTLE) is an established method for anonymising data streams with a guarantee of k-anonymity. However, k-anonymity has been shown to be a weak privacy guarantee that has vulnerabilities in practical applications. In this paper we propose Continuously Anonymising STreaming data via adaptive cLustEring with GUAR-anteed Differential privacy (CASTLEGUARD), a data stream anonymisation algorithm that provides a reliable guarantee of k-anonymity, l-diversity and differential privacy to data subjects. We analyse CASTLEGUARD to show that, through safe k-anonymisation and β-sampling, the proposed approach satisfies differentially private k-anonymity. Further, we demonstrate the efficacy of the approach in the context of machine learning, presenting experimental analysis to demonstrate that it can be used to protect the individual privacy of users whilst maintaining the utility of a data stream

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Multistrange baryon production in Au-Au collisions at root s(NN)=130 GeV

    Get PDF
    The transverse mass spectra and midrapidity yields for Xis and Omegas are presented. For the 10% most central collisions, the (Xi) over bar (+)/h(-) ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi(-)/h(-) stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi, K, p, and Lambdas

    Incident energy dependence of p(t) correlations at relativistic energies

    Get PDF
    Journals published by the American Physical Society can be found at http://publish.aps.org/We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at root SNN = 20, 62, 130, and 200 GeV at the BNL Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy, and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements made at the CERN Super Proton Synchrotron

    Multistrange baryon elliptic flow in Au plus Au collisions at root(NN)-N-S=200 GeV

    Get PDF
    We report on the first measurement of elliptic flow nu(2)(p(T)) of multistrange baryons Xi(-)+Xi(+) and Omega(-)+Omega(+) in heavy-ion collisions. In minimum-bias Au+Au collisions at root s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The p(T) dependence of nu(2) of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider

    Open charm yields in d+Au collisions at root s(NN)=200 GeV

    Get PDF
    Midrapidity open charm spectra from direct reconstruction of D-0((D) over bar (0))-->K(-/+)pi(+/-) in d(+)Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at roots(NN)=200 GeV are reported. The D-0((D) over bar (0)) spectrum covers a transverse momentum (p(T)) range of 0.1< p(T) < 3 GeV/c, whereas the electron spectra cover a range of 1< p(T) < 4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at midrapidity for open charm production from d+Au collisions at BNL RHIC is dsigma(c)((c)) over bar (NN)/dy=0.30+/-0.04(stat)+/-0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed

    Partonic flow and phi-meson production in Au+Au collisions at root s(NN)=200 GeV

    No full text
    We present first measurements of the phi-meson elliptic flow (v(2)(p(T))) and high-statistics p(T) distributions for different centralities from root s(NN) = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v(2) of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to p(T)similar to 4 GeV/c, but disagrees at higher momenta. The nuclear modification factor (R-CP) of phi follows the trend observed in the K-S(0) mesons rather than in Lambda baryons, supporting baryon-meson scaling. These data are consistent with phi mesons in central Au+Au collisions being created via coalescence of thermalized s quarks and the formation of a hot and dense matter with partonic collectivity at RHIC

    K(892)(*) resonance production in Au+Au and p+p collisions at root s(NN)=200 GeV

    No full text
    Journals published by the American Physical Society can be found at http://publish.aps.org/The short-lived K(892)* resonance provides an efficient tool to probe properties of the hot and dense medium produced in relativistic heavy-ion collisions. We report measurements of K* in root s(NN)=200 GeV Au+Au and p+p collisions reconstructed via its hadronic decay channels K(892)*(0)-> K pi and K(892)*(+/-)-> K(S)(0)pi(+/-) using the STAR detector at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The K*(0) mass has been studied as a function of p(T) in minimum bias p+p and central Au+Au collisions. The K(*) p(T) spectra for minimum bias p+p interactions and for Au+Au collisions in different centralities are presented. The K*/K yield ratios for all centralities in Au+Au collisions are found to be significantly lower than the ratio in minimum bias p+p collisions, indicating the importance of hadronic interactions between chemical and kinetic freeze-outs. A significant nonzero K*(0) elliptic flow (v(2)) is observed in Au+Au collisions and is compared to the K(S)(0) and Lambda v(2). The nuclear modification factor of K* at intermediate p(T) is similar to that of K(S)(0) but different from Lambda. This establishes a baryon-meson effect over a mass effect in the particle production at intermediate p(T) (2 < p(T)<= 4 GeV/c)
    corecore