25 research outputs found

    The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients

    Get PDF
    Active microbes likely have larger impact on gut health status compared to inactive or dormant microbes. We investigate the composition of active and total mucosal microbiota of treatment-naïve ulcerative colitis (UC) patients to determine the microbial picture at the start-up phase of disease, using both a 16S rRNA transcript and gene amplicon sequencing. DNA and RNA were isolated from the same mucosal colonic biopsies. Our aim was to identify active microbial members of the microbiota in early stages of disease and reveal which members are present, but do not act as major players. We demonstrated differences in active and total microbiota of UC patients when comparing inflamed to non-inflamed tissue. Several taxa, among them the Proteobacteria phyla and families therein, revealed lower transcriptional activity despite a high presence. The Bifidobacteriaceae family of the Actinobacteria phylum showed lower abundance in the active microbiota, although no difference in presence was detected. The most abundant microbiota members of the inflamed tissue in UC patients were not the most active. Knowledge of active members of microbiota in UC patients could enhance our understanding of disease etiology. The active microbial community composition did not deviate from the total when comparing UC patients to non-IBD controls

    Geochemical modelling of fluoride concentration changes during Aquifer Storage and Recovery (ASR) in the Chalk aquifer in Wessex, England

    Get PDF
    During ASR-cycle testing at a site in the confined Chalk near Lytchett Minster in Dorset, the high concentration of fluoride in the recovered water posed severe limitations on the success of the scheme. Based on physical modelling, the dual porosity character of the Chalk combined with high fluoride concentrations in the native water were identified as the key factors controlling the measured concentrations. However, mixing of water between the matrix pores and fractures was not sufficient to explain the fluoride concentration and it was concluded that there was an additional release of fluoride from aquifer interaction. This led to an additional increase in the fluoride concentration in the recovered water. In order to investigate this hypothesis, a geochemical model incorporating reactions between the injected water, the native groundwater and the aquifer minerals was developed. The geochemical model PHREEQC-2 was set up so that it was capable of modelling ASR-cycles (including radial flow and diffusive mixing as a consequence of dual porosity). The physical aspects of the model were calibrated using a 3-D dual porosity transport model (SWIFT). Different geochemical processes (e.g. limited mineral availability, reaction kinetics) causing fluoride concentrations above those expected from dual porosity mixing were investigated. Comparing the modelled results with the observations from the test site suggested that slow dissolution of fluoride minerals (fluorite) was likely to be responsible for the additional increase in fluoride concentration in the recovered water

    Hemodynamics of the corpus luteum in mares during experimentally impaired luteogenesis and partial luteolysis

    No full text
    © 2017 The aim of the current project was to characterize the luteal vascularity and the plasma concentrations of progesterone (P4), prolactin (PRL) and 13,14-dihydro-15-keto-PGF2α (PGFM) in mares with luteal disturbances during early and mid-diestrus. In Experiment 1, twenty-one mares were treated with 2 mL of 0.9% NaCl, or 1 mg Dinoprost, or 10 mg Dinoprost on day two after ovulation (Control-D2, 1/10PGF-D2 and PGF-D2 groups, respectively; n = 7 mares/group). In Experiment 2, similar treatments were performed eight days post-ovulation using a different cohort of 21 mares (Control-D8, 1/10PGF-D8 and PGF-D8 groups, respectively; n = 7 mares/group). Blood samples were collected hourly and power-Doppler examinations of the corpus luteum (CL) were performed every 6 h from H0 (moment immediately before treatment) to H48. Data collection was also done once a day from D0 (day of ovulation) to D20. In Experiment 1, the PGF-D2 and 1/10PGF-D2 groups had lower increase of plasma concentration of P4 until H48 and reduced maximum P4 concentrations on D8-D11 than mares from the Control-D2 group. However, no differences among groups were detected for luteal vascularity during early and mid-diestrus. In Experiment 2, complete and partial luteolysis were detected in mares from the PGF-D8 and 1/10PGF-D8 groups, respectively. Luteal vascularity and plasma P4 concentrations differed among Control-D8, PGF-D8 and 1/10PGF-D8 groups on H48. Partially regressed CLs (1/10PGF-D8 group) generated more Doppler signals than completed regressed CLs (PGF-D8 group) between D10 and D13. In both experiments, a transient increase in PRL activity was observed in parallel to the PGFM pulse in mares receiving 1 or 10 mg Dinoprost. The use of prostaglandin on D2 at conventional or 1/10 of the dose impaired the luteal development in mares. Moreover, the low dose of prostaglandin lead to partial regression of mature CLs. The blood supply was reduced in partially regressed CLs, but not in CLs undergoing impaired luteogenesis
    corecore