293 research outputs found

    Effect of Mouth Rinsing and Ingestion of Carbohydrate Solutions on Mood and Perceptual Responses During Exercise

    Get PDF
    Background: The aim of this study was to investigate whether mouth rinsing or ingesting carbohydrate (CHO) solutions impact on perceptual responses during exercise. Methods: Nine moderately trained male cyclists underwent a 90-min glycogen-reducing exercise, and consumed a low CHO meal, prior to completing an overnight fast. A 1-h cycle time trial was performed the following morning. Four trials, each separated by 7days, were conducted in a randomized, counterbalanced study design: 15% CHO mouth rinse (CHOR), 7.5% CHO ingestion (CHOI), placebo mouth rinse (PLAR) and placebo ingestion (PLAI). Solution volumes (1.5ml·g-1 ingestion trials and 0.33ml·kg-1 rinsing trials) were provided after every 12.5% of completed exercise. Perceptual scales were used to assess affective valence (feeling scale, FS), arousal (felt arousal scale, FAS), exertion (ratings of perceived exertion, RPE) and mood (profile of mood states, POMS) before, during and immediately after exercise. Results: There was no difference in RPE (CHOI, 14.0±9; CHOR, 14.2±.7; PLAI, 14.6±1.8; PLAR, 14.6±2.0; P=0.35), FS (CHOI, 0.0±1.7; CHOR, -0.2±1.5; PLAI, -0.8±1.4; PLAR, -0.8±1.6; P0.15), or FAS (CHOI, 3.6±1.1; CHOR, 3.5±1.0; PLAI, 3.4±1.4; PLAR, 3.3±1.3; P=725) scores between trials. While overall POMS score did not appear to differ between trials, the 'vigour' subscale indicated that CHOI may facilitate the maintenance of 'vigour' scores over time, in comparison to the steady decline witnessed in other trials (P=0.04). There was no difference in time trial performance between trials (CHOI, 65.3±4.8min; CHOR, 68.4±3.9min; PLAI, 68.7±5.3min; PLAR, 68.3±5.2min; P=0.21) but power output was higher in CHOI (231.0±33.2 W) relative to other trials (221-223.6 W; Plt0.01). Conclusions: In a CHO-reduced state, mouth rinsing with a CHO solution did not impact on perceptual responses during high-intensity exercise in trained cyclists and triathletes. On the other hand CHO ingestion improved perceived ratings of vigour and increased power output during exercise

    Fatty Acid Binding Protein 1 Is Related with Development of Aspirin-Exacerbated Respiratory Disease

    Get PDF
    BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) refers to the development of bronchoconstriction in asthmatics following the ingestion of aspirin. Although alterations in eicosanoid metabolites play a role in AERD, other immune or inflammatory mechanisms may be involved. We aimed to identify proteins that were differentially expressed in nasal polyps between patients with AERD and aspirin-tolerant asthma (ATA). METHODOLOGY/PRINCIPAL FINDINGS: Two-dimensional electrophoresis was adopted for differential display proteomics. Proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS). Western blotting and immunohistochemical staining were performed to compare the amount of fatty acid-binding protein 1 (FABP1) in the nasal polyps of patients with AERD and ATA. Fifteen proteins were significantly up- (seven spots) or down-regulated in the nasal polyps of patients with AERD (n = 5) compared to those with ATA (n = 8). LC-MS revealed an increase in seven proteins expression and a decrease in eight proteins expression in patients with AERD compared to those with ATA (P = 0.003-0.045). FABP1-expression based on immunoblotting and immunohistochemical analysis was significantly higher in the nasal polyps of patients with AERD compared to that in patients with ATA. FABP1 was observed in epithelial, eosinophils, macrophages, and the smooth-muscle cells of blood vessels in the polyps. CONCLUSIONS/SIGNIFICANCE: Our results indicate that alterations in 15 proteins, including FABP1, may be related to the development of AERD

    Triple-negative, basal-like, and quintuple-negative breast cancers: better prediction model for survival

    Get PDF
    Background: Triple-negative breast cancers (TNBCs) and basal-like breast cancers (BLBCs) are known as poor outcome subtypes with a lack of targeted therapy. Previous studies have shown conflicting results regarding the difference of prognostic significance between TNBCs and BLBCs. In this study, we aimed to characterize the prognostic features of TNBCs, in view of BLBCs and quintuple-negative breast cancers (QNBC/5NPs). Methods: Using tissue microarray-based immunohistochemical analysis, we categorized 951 primary breast cancers into four or five subtypes according to the expression of ER, PR, HER2, and basal markers (CK5/6, EGFR). Results: The results of this study showed that both TNBCs and BLBCs were associated with high histological and/ or nuclear grades. When the TNBCs are divided into two subtypes by the presence of basal markers, the clinicopathologic characteristics of TNBCs were mainly maintained in the BLBCs. The 5-subgrouping was the better prediction model for both disease free and overall survival in breast cancers than the 4-subgrouping. After multivariate analysis of TNBCs, the BLBCs did not have a worse prognosis than the QNBC/5NPs. Interestingly, the patients with BLBCs showed significant adjuvant chemotherapy benefit. In addition, QNBC/5NPs comprised about 6~8% of breast cancers in publicly available breast cancer datasets Conclusion: The QNBC/5NP subtype is a worse prognostic subgroup of TNBCs, especially in higher stage and this result may be related to adjuvant chemotherapy benefit of BLBCs, calling for caution in the identification of subgroups of patients for therapeutic classification

    Phosphorylation of Nicastrin by SGK1 Leads to Its Degradation through Lysosomal and Proteasomal Pathways

    Get PDF
    The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437, thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator presumably effective through phosphorylation and degradation of NCT

    The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.</p> <p>The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs) transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and bladder and hindlimb functions.</p> <p>Results</p> <p>Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration.</p> <p>Conclusion</p> <p>hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to recover locomotor and bladder dysfunction. BDNF and NT-3 levels in the spinal cord and bladder were not increased 28 and 56 days after hMSC transplantation.</p

    A Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis

    Get PDF
    The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 “core” root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network

    Estimation of allele frequency and association mapping using next-generation sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., < 15<it>X</it>). However, SNP calling and allele frequency estimation in such studies is associated with substantial statistical uncertainty because of varying coverage and high error rates.</p> <p>Results</p> <p>We evaluate a new maximum likelihood method for estimating allele frequencies in low and medium coverage next-generation sequencing data. The method is based on integrating over uncertainty in the data for each individual rather than first calling genotypes. This method can be applied to directly test for associations in case/control studies. We use simulations to compare the likelihood method to methods based on genotype calling, and show that the likelihood method outperforms the genotype calling methods in terms of: (1) accuracy of allele frequency estimation, (2) accuracy of the estimation of the distribution of allele frequencies across neutrally evolving sites, and (3) statistical power in association mapping studies. Using real re-sequencing data from 200 individuals obtained from an exon-capture experiment, we show that the patterns observed in the simulations are also found in real data.</p> <p>Conclusions</p> <p>Overall, our results suggest that association mapping and estimation of allele frequencies should not be based on genotype calling in low to medium coverage data. Furthermore, if genotype calling methods are used, it is usually better not to filter genotypes based on the call confidence score.</p

    High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors

    Get PDF
    A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials
    corecore