185 research outputs found

    Carriage of the V279F Null Allele within the Gene Encoding Lp-PLA2 Is Protective from Coronary Artery Disease in South Korean Males

    Get PDF
    The Asia-specific PLA2G7 994G-T transversion leads to V279F substitution within the lipoprotein-associated phospholipase-A2 (Lp-PLAβ‚‚) and to absence of enzyme activity in plasma. This variant offers a unique natural experiment to assess the role of Lp-PLAβ‚‚ in the pathogenesis of coronary artery disease (CAD) in humans. Given conflicting results from mostly small studies, a large two-stage case-control study was warranted.PLA2G7 V279F genotypes were initially compared in 2890 male cases diagnosed with CAD before age 60 with 3128 male controls without CAD at age 50 and above and subsequently in a second independent male dataset of 877 CAD cases and 1230 controls. In the first dataset, the prevalence of the 279F null allele was 11.5% in cases and 12.8% in controls. After adjustment for age, body mass index, diabetes, smoking, glucose and lipid levels, the OR (95% CI) for CAD for this allele was 0.80 (0.66-0.97, pβ€Š=β€Š0.02). The results were very similar in the second dataset, despite lower power, with an allele frequency of 11.2% in cases and 12.5% in controls, leading to a combined OR of 0.80 (0.69-0.92), pβ€Š=β€Š0.002. The magnitude and direction of this genetic effect were fully consistent with large epidemiological studies on plasma Lp-PLAβ‚‚ activity and CAD risk.Natural deficiency in Lp-PLAβ‚‚ activity due to carriage of PLA2G7 279F allele protects from CAD in Korean men. These results provide evidence for a causal relationship between Lp-PLAβ‚‚ and CAD, and support pharmacological inhibition of this enzyme as an innovative way to prevent CAD

    Carriage of the V279F Null Allele within the Gene Encoding Lp-PLA2 Is Protective from Coronary Artery Disease in South Korean Males

    Get PDF
    The Asia-specific PLA2G7 994G-T transversion leads to V279F substitution within the lipoprotein-associated phospholipase-A2 (Lp-PLAβ‚‚) and to absence of enzyme activity in plasma. This variant offers a unique natural experiment to assess the role of Lp-PLAβ‚‚ in the pathogenesis of coronary artery disease (CAD) in humans. Given conflicting results from mostly small studies, a large two-stage case-control study was warranted.PLA2G7 V279F genotypes were initially compared in 2890 male cases diagnosed with CAD before age 60 with 3128 male controls without CAD at age 50 and above and subsequently in a second independent male dataset of 877 CAD cases and 1230 controls. In the first dataset, the prevalence of the 279F null allele was 11.5% in cases and 12.8% in controls. After adjustment for age, body mass index, diabetes, smoking, glucose and lipid levels, the OR (95% CI) for CAD for this allele was 0.80 (0.66-0.97, pβ€Š=β€Š0.02). The results were very similar in the second dataset, despite lower power, with an allele frequency of 11.2% in cases and 12.5% in controls, leading to a combined OR of 0.80 (0.69-0.92), pβ€Š=β€Š0.002. The magnitude and direction of this genetic effect were fully consistent with large epidemiological studies on plasma Lp-PLAβ‚‚ activity and CAD risk.Natural deficiency in Lp-PLAβ‚‚ activity due to carriage of PLA2G7 279F allele protects from CAD in Korean men. These results provide evidence for a causal relationship between Lp-PLAβ‚‚ and CAD, and support pharmacological inhibition of this enzyme as an innovative way to prevent CAD

    Determination of Membrane Protein Transporter Oligomerization in Native Tissue Using Spatial Fluorescence Intensity Fluctuation Analysis

    Get PDF
    Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state

    Point Mutations in GLI3 Lead to Misregulation of its Subcellular Localization

    Get PDF
    Background Mutations in the transcription factor GLI3, a downstream target of Sonic Hedgehog (SHH) signaling, are responsible for the development of malformation syndromes such as Greig-cephalopolysyndactyly-syndrome (GCPS), or Pallister-Hall-syndrome (PHS). Mutations that lead to loss of function of the protein and to haploinsufficiency cause GCPS, while truncating mutations that result in constitutive repressor function of GLI3 lead to PHS. As an exception, some point mutations in the C-terminal part of GLI3 observed in GCPS patients have so far not been linked to loss of function. We have shown recently that protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity a of GLI3 function. Principal Findings We have shown recently that protein phosphatase 2A (PP2A) and the ubiquitin ligase MID1 regulate the nuclear localization and transcriptional activity of GLI3. Here we show mapping of the functional interaction between the MID1-Ξ±4-PP2A complex and GLI3 to a region between amino acid 568-1100 of GLI3. Furthermore we demonstrate that GCPS-associated point mutations, that are located in that region, lead to misregulation of the nuclear GLI3-localization and transcriptional activity. GLI3 phosphorylation itself however appears independent of its localization and remains untouched by either of the point mutations and by PP2A-activity, which suggests involvement of an as yet unknown GLI3 interaction partner, the phosphorylation status of which is regulated by PP2A activity, in the control of GLI3 subcellular localization and activity. Conclusions The present findings provide an explanation for the pathogenesis of GCPS in patients carrying C-terminal point mutations, and close the gap in our understanding of how GLI3-genotypes give rise to particular phenotypes. Furthermore, they provide a molecular explanation for the phenotypic overlap between Opitz syndrome patients with dysregulated PP2A-activity and syndromes caused by GLI3-mutations

    Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria

    Get PDF
    Staphyloccus aureus is a major human pathogen leading frequently to sepsis and soft tissue infections with abscesses. Multiple virulence factors including several immune modulating molecules contribute to its survival in the host. When S. aureus invades the human body, one of the first line defenses is the complement system, which opsonizes the bacteria with C3b and attract neutrophils by release of chemotactic peptides. Neutrophils express Complement receptor-1 [CR1, CD35) that interacts with the C3b-opsonized particles and thereby plays an important role in pathogen recognition by phagocytic cells. In this study we observed that a fraction of S. aureus culture supernatant prevented binding of C3b to neutrophils. This fraction consisted of S. aureus leukocidins and Efb. The C-terminus of Efb is known to bind C3b and shares significant sequence homology to the extracellular complement binding protein [Ecb). Here we show that S. aureus Ecb displays various mechanisms to block bacterial recognition by neutrophils. The presence of Ecb blocked direct interaction between soluble CR1 and C3b and reduced the cofactor activity of CR1 in proteolytic inactivation of C3b. Furthermore, Ecb could dose-dependently prevent recognition of C3b by cell-bound CR1 that lead to impaired phagocytosis of NHS-opsonized S. aureus. Phagocytosis was furthermore reduced in the presence of soluble CR1 [sCR1). These data indicate that the staphylococcal protein Ecb prevents recognition of C3b opsonized bacteria by neutrophil CR1 leading to impaired killing by phagocytosis and thereby contribute to immune evasion of S. aureus.Peer reviewe

    Associations of Variants in CHRNA5/A3/B4 Gene Cluster with Smoking Behaviors in a Korean Population

    Get PDF
    Multiple genome-wide and targeted association studies reveal a significant association of variants in the CHRNA5-CHRNA3-CHRNB4 (CHRNA5/A3/B4) gene cluster on chromosome 15 with nicotine dependence. The subjects examined in most of these studies had a European origin. However, considering the distinct linkage disequilibrium patterns in European and other ethnic populations, it would be of tremendous interest to determine whether such associations could be replicated in populations of other ethnicities, such as Asians. In this study, we performed comprehensive association and interaction analyses for 32 single-nucleotide polymorphisms (SNPs) in CHRNA5/A3/B4 with smoking initiation (SI), smoking quantity (SQ), and smoking cessation (SC) in a Korean sample (Nβ€Š=β€Š8,842). We found nominally significant associations of 7 SNPs with at least one smoking-related phenotype in the total sample (SI: Pβ€Š=β€Š0.015∼0.023; SQ: Pβ€Š=β€Š0.008∼0.028; SC: Pβ€Š=β€Š0.018∼0.047) and the male sample (SI: Pβ€Š=β€Š0.001∼0.023; SQ: Pβ€Š=β€Š0.001∼0.046; SC: Pβ€Š=β€Š0.01). A spectrum of haplotypes formed by three consecutive SNPs located between rs16969948 in CHRNA5 and rs6495316 in the intergenic region downstream from the 5β€² end of CHRNB4 was associated with these three smoking-related phenotypes in both the total and the male sample. Notably, associations of these variants and haplotypes with SC appear to be much weaker than those with SI and SQ. In addition, we performed an interaction analysis of SNPs within the cluster using the generalized multifactor dimensionality reduction method and found a significant interaction of SNPs rs7163730 in LOC123688, rs6495308 in CHRNA3, and rs7166158, rs8043123, and rs11072793 in the intergenic region downstream from the 5β€² end of CHRNB4 to be influencing SI in the male sample. Considering that fewer than 5% of the female participants were smokers, we did not perform any analysis on female subjects specifically. Together, our detected associations of variants in the CHRNA5/A3/B4 cluster with SI, SQ, and SC in the Korean smoker samples provide strong evidence for the contribution of this cluster to the etiology of SI, ND, and SC in this Asian population

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies
    • …
    corecore