9,060 research outputs found

    Covariant density functional theory: The role of the pion

    Full text link
    We investigate the role of the pion in Covariant Density Functional Theory. Starting from conventional Relativistic Mean Field (RMF) theory with a non-linear coupling of the σ\sigma-meson and without exchange terms we add pions with a pseudo-vector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the non-central contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.Comment: 12 pages, 5 figure

    The radial metallicity gradients in the Milky Way thick disk as fossil signatures of a primordial chemical distribution

    Get PDF
    In this letter we examine the evolution of the radial metallicity gradient induced by secular processes, in the disk of an NN-body Milky Way-like galaxy. We assign a [Fe/H] value to each particle of the simulation according to an initial, cosmologically motivated, radial chemical distribution and let the disk dynamically evolve for 6 Gyr. This direct approach allows us to take into account only the effects of dynamical evolution and to gauge how and to what extent they affect the initial chemical conditions. The initial [Fe/H] distribution increases with R in the inner disk up to R ~ 10 kpc and decreases for larger R. We find that the initial chemical profile does not undergo major transformations after 6 Gyr of dynamical evolution. The final radial chemical gradients predicted by the model in the solar neighborhood are positive and of the same order of those recently observed in the Milky Way thick disk. We conclude that: 1) the spatial chemical imprint at the time of disk formation is not washed out by secular dynamical processes, and 2) the observed radial gradient may be the dynamical relic of a thick disk originated from a stellar population showing a positive chemical radial gradient in the inner regions.Comment: 10 pages, 5 figures, Accepted for publication on Astrophysical Journal Letter

    Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa-sinensis L. flower

    Get PDF
    Although the physiological and molecular mechanisms of flower development and senescence have been extensively investigated, a whole-flower partitioning study of mineral concentrations has not been carried out. In this work, the distribution of sucrose, total reducing sugars, dry and fresh weight and macro and micronutrients were analysed in Hibiscus rosa-sinensis L. petals, stylestigma including stamens and ovary at different developmental stages (bud, open and senescent flowers). Total reducing sugars showed the highest value in petals of bud flowers, then fell during the later stages of flower development whereas sucrose showed the highest value in petals of senescent flowers. In petals, nitrogen and phosphorus content increased during flower opening, then nitrogen level decreased in senescent flowers. The calcium, phosphorus and boron concentrations were highest in ovary tissues whatever the developmental stage. Overall, the data presented suggests that the high level of total reducing sugars prior the onset of flower opening contributes to support petal cells expansion, while the high amount of sucrose at the time of petal wilting may be viewed as a result of senescence. Furthermore, this study discusses how the accumulation of particular mineral nutrients can be considered in a tissue specific manner for the activation of processes directly connected with reproduction

    Calibrated quantum thermometry in cavity optomechanics

    Full text link
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in peculiarly quantum states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sidebands asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure

    Dynamical two-mode squeezing of thermal fluctuations in a cavity opto-mechanical system

    Full text link
    We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity opto-mechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing enhanced squeezing effect surpassing the stationary 3dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum opto-mechanical modes

    Control of Recoil Losses in Nanomechanical SiN Membrane Resonators

    Get PDF
    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 10710^7, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures

    The microbiota of the bilio-pancreatic system: A cohort, STROBE-compliant study

    Get PDF
    Background: The gut microbiota play an essential role in protecting the host against pathogenic microorganisms by modulating immunity and regulating metabolic processes. In response to environmental factors, microbes can hugely alter their metabolism. These factors can substantially impact the host and have potential pathologic implications. Particularly pathogenic microorganisms colonizing pancreas and biliary tract tissues may be involved in chronic inflammation and cancer evolution. Purpose: To evaluate the effect of bile microbiota on survival in patients with pancreas and biliary tract disease (PBD). Patients and Methods: We investigated 152 Italian patients with cholelithiasis (CHL), cholangitis (CHA), cholangiocarcinoma (CCA), gallbladder carcinoma (GBC), pancreas head carcinoma (PHC), ampullary carcinoma (ACA), and chronic pancreatitis (CHP). Demographics, bile cultures, therapy, and survival rates were analyzed in cohorts (T1 death <6 months; T2 death <12 months; T3 death <18 months, T3S alive at 18 months). Results: The most common bacteria in T1 were E. coli, K. pneumoniae, andP. aeruginosa. In T2, the most common bacteria were E. coli and P. aeruginosa. InT3, there were no significant bacteria isolated, while in T3S the most common bacteria were like those found in T1. E. coli and K. pneumoniae were positive predictors of survival for PHC and ACA, respectively. E. coli, K. pneumoniae, andP. aeruginosa showed a high percentage of resistant bacteria to 3CGS, aminoglycosides class, and quinolone group especially at T1 and T2 in cancer patients. Conclusions: An unprecedented increase of E. coli in bile leads to a decrease in survival. We suggest that some strains isolated in bile samples may be considered within the group of risk factors in carcinogenesis and/or progression of hepato-biliary malignancy. A better understanding of bile microbiota in patients with PBD should lead to a multifaceted approach to rapidly detect and treat pathogens before patients enter the surgical setting in tandem with the implementation of the infection control policy

    HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies

    Get PDF
    In recent years it has become clear that the vertical structure of disk galaxies is a key ingredient for understanding galaxy evolution. In particular, the presence and structure of extra-planar gas has been a focus of research. The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a census on the rate of cold neutral gas accretion in nearby galaxies as well as a statistically significant set of galaxies that can be investigated for their extra-planar gas properties. In order to better understand the the vertical structure of the neutral hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct detailed tilted ring models. The addition of distortions resembling arcs or spiral arms significantly improves the fit of the models to these galaxies. In the case of UGC 2082 no vertical gradient in rotational velocity is required in either symmetric models nor non-symmetric models to match the observations. The best fitting model features two arcs of large vertical extent that may be due to accretion. In the case of NGC 5023 a vertical gradient is required in symmetric models (dV/dz =14.9±3.8-14.9\pm3.8 km s1^{-1} kpc1^{-1}) and its magnitude is significantly lowered when non-symmetric models are considered (dV/dz =9.4±3.8-9.4\pm3.8 km s1^{-1} kpc1^{-1}). Additionally it is shown that the underlying disk of NGC 5023 can be made symmetric, in all parameters except the warp, in non-symmetric models. In comparison to the "classical" modeling these models fit the data significantly better with a limited addition of free parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA

    Recurrence of the blue wing enhancements in the high ionization lines of SDSS 1004+4112 A

    Get PDF
    We present integral field spectroscopic observations of the quadruple-lensed QSO SDSS 1004+4112 taken with the fiber system INTEGRAL at the William Herschel Telescope on 2004 January 19. In May 2003 a blueward enhancement in the high ionization lines of SDSS 1004+4112A was detected and then faded. Our observations are the first to note a second event of similar characteristics less than one year after. Although initially attributed to microlensing, the resemblance among the spectra of both events and the absence of microlensing-induced changes in the continuum of component A are puzzling. The lack of a convincing explanation under the microlensing or intrinsic variability hypotheses makes the observed enhancements particularly relevant, calling for close monitoring of this object.Comment: 4 pages, 5 figure
    corecore