In this letter we examine the evolution of the radial metallicity gradient
induced by secular processes, in the disk of an N-body Milky Way-like galaxy.
We assign a [Fe/H] value to each particle of the simulation according to an
initial, cosmologically motivated, radial chemical distribution and let the
disk dynamically evolve for 6 Gyr. This direct approach allows us to take into
account only the effects of dynamical evolution and to gauge how and to what
extent they affect the initial chemical conditions. The initial [Fe/H]
distribution increases with R in the inner disk up to R ~ 10 kpc and decreases
for larger R. We find that the initial chemical profile does not undergo major
transformations after 6 Gyr of dynamical evolution. The final radial chemical
gradients predicted by the model in the solar neighborhood are positive and of
the same order of those recently observed in the Milky Way thick disk.
We conclude that: 1) the spatial chemical imprint at the time of disk
formation is not washed out by secular dynamical processes, and 2) the observed
radial gradient may be the dynamical relic of a thick disk originated from a
stellar population showing a positive chemical radial gradient in the inner
regions.Comment: 10 pages, 5 figures, Accepted for publication on Astrophysical
Journal Letter