202 research outputs found

    Formas de uréia e doses de nitrogênio em cobertura na qualidade fisiológica de sementes de trigo.

    Get PDF
    A adubação nitrogenada, além de aumentar a produtividade, pode favorecer a qualidade fisiológica das sementes. O trigo no Paraná é geralmente cultivado após a cultura da soja, com isso a palha da soja e outros fatores do solo podem minimizar o efeito do nitrogênio no trigo. O objetivo do trabalho foi avaliar o efeito de doses de adubação nitrogenada em cobertura e de diferentes formas de ureia, na qualidade fisiológica de sementes de genótipos de trigo. Os experimentos foram conduzidos em Londrina e Ponta Grossa-PR. As áreas experimentais são manejadas no sistema de plantio direto com rotação de culturas, sendo a soja a cultura anterior. Foram avaliadas sementes de três genótipos de trigo (BRS 208, BRS Pardela e IWT 04008) cultivados sob quatro doses de nitrogênio em cobertura (0, 40, 80 e 120 kg ha-1), provenientes de três formas de ureia (convencional, com inibidor de urease e protegida). A adubação nitrogenada de cobertura foi realizada durante o estádio de perfilhamento, aos 20 dias após a emergência. Avaliou-se o teor de nitrogênio nas sementes, a massa de 1000 sementes, a germinação e o vigor (primeira contagem, frio, emergência, massa seca de plântulas, envelhecimento acelerado e condutividade elétrica). Os genótipos de trigo foram analisados conjuntamente para cada local. A linhagem IWT 04008 e a cultivar BRS Pardela apresentam sementes com qualidade fisiológica superior a cultivar BRS 208. Somente em Londrina, em consequência do acamamento, as doses de nitrogênio influenciaram negativamente a massa de 1000 grãos e a condutividade elétrica e, positivamente o teor de proteína. As formas de ureia e as doses de nitrogênio não alteram a qualidade fisiológica das sementes de diferentes genótipos de trigo

    Aquaporin-like water transport in nanoporous crystalline layered carbon nitride

    Get PDF
    Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes

    Single crystal, luminescent carbon nitride nanosheets formed by spontaneous dissolution

    Get PDF
    A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order. Here, we demonstrate that these semiconductors are spontaneously soluble in select polar aprotic solvents, that is, without any chemical or physical intervention. In contrast to more aggressive exfoliation strategies, this thermodynamically driven dissolution process perfectly maintains the crystallographic form of the starting material, yielding solutions of defect-free, hexagonal 2D nanosheets with a well-defined size distribution. This pristine nanosheet structure results in narrow, excitation-wavelength-independent photoluminescence emission spectra. Furthermore, by controlling the aggregation state of the nanosheets, we demonstrate that the emission wavelengths can be tuned from narrow UV to broad-band white. This has potential applicability to a range of optoelectronic devices

    Codon Size Reduction as the Origin of the Triplet Genetic Code

    Get PDF
    The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions

    On the Variability of the Length Weight Relationship for Atlantic Bluefin Tuna, Thunnus thynnus (L.)

    Full text link
    Following extensive review, a model of the Atlantic bluefin tuna (ABFT), Thunnus thynnus (L.), length–weight relationship for the eastern Atlantic and Mediterranean (RW = 0.0000188 SFL3.01247; Ec 1) is presented on the basis of samples of ABFT spawners, with an average value of index K = 2.03 ± 0.15SD, collected by the Atlantic traps of Portugal and Spain in the Strait of Gibraltar (1963; 1996–1998; 2000–2012), and a set of samples of juvenile fishes from ICCAT–GBYP (n = 707). The resulting model (Ec 1), together with the model used for the eastern stock assessment (RW = 0.000019607 SFL3.0092; Ec 2) and a recently adopted by ICCAT Standing Committee on Research and Statistics (SCRS) (RW = 0.0000315551 SFL2.898454; EAST) are analyzed in using a bi-variant sample [SFL (cm), RW (kg)] of 474 pairs of data with the aim of validating them and establishing which model(s) best fit the reality represented by the sample and, therefore, will have the greatest descriptive and predictive power. The result of the analysis indicates that the model EAST clearly underestimates the weight of spawning ABFT and that model Ec 2 overestimates it slightly, being model Ec 1 that best explains the data of the sample. The result of the classical statistical analysis is confirmed by means of the quantile regression technique, selecting the quantiles 5, 25, 50, 75, and 95%. Other fisheries and biological indicators also conclude that the model EAST gradually underestimates the weight of ABFT spawners (of 2–3 m) by 9–12.5 %, and does not meet the criterion that for RW = 725 kg (Wmax), SFL = 319.93 ± 11.3 cm (Lmax).Cort, JL.; Estruch Fuster, VD.; Neves Dos Santos, M.; Di Natale, A.; Abid, N.; De La Serna, JM. (2015). On the Variability of the Length Weight Relationship for Atlantic Bluefin Tuna, Thunnus thynnus (L.). Reviews in Fisheries Science & Aquaculture. 23(1):23-38. doi:10.1080/23308249.2015.1008625S2338231Aguado-Giménez, F., & García-García, B. (2005). Changes in some morphometric relationships in Atlantic bluefin tuna (Thunnus thynnus thynnus Linnaeus, 1758) as a result of fattening process. Aquaculture, 249(1-4), 303-309. doi:10.1016/j.aquaculture.2005.04.064Block, B. A., Teo, S. L. H., Walli, A., Boustany, A., Stokesbury, M. J. W., Farwell, C. J., … Williams, T. D. (2005). Electronic tagging and population structure of Atlantic bluefin tuna. Nature, 434(7037), 1121-1127. doi:10.1038/nature03463Chapman, E. W., Jørgensen, C., & Lutcavage, M. E. (2011). Atlantic bluefin tuna (Thunnus thynnus): a state-dependent energy allocation model for growth, maturation, and reproductive investment. Canadian Journal of Fisheries and Aquatic Sciences, 68(11), 1934-1951. doi:10.1139/f2011-109Cort, J. L., Arregui, I., Estruch, V. D., & Deguara, S. (2014). Validation of the Growth Equation Applicable to the Eastern Atlantic Bluefin Tuna,Thunnus thynnus(L.), UsingLmax, Tag-Recapture, and First Dorsal Spine Analysis. Reviews in Fisheries Science & Aquaculture, 22(3), 239-255. doi:10.1080/23308249.2014.931173Cort, J. L., Deguara, S., Galaz, T., Mèlich, B., Artetxe, I., Arregi, I., … Idrissi, M. (2013). Determination ofLmaxfor Atlantic Bluefin Tuna,Thunnus thynnus(L.), from Meta-Analysis of Published and Available Biometric Data. Reviews in Fisheries Science, 21(2), 181-212. doi:10.1080/10641262.2013.793284Fraser, K.Possessed. World Record Holder for Bluefin Tuna. Kingstown, Nova Scotia: T & S Office Essentials and printing, 243 pp. (2008).Fromentin, J.-M., & Powers, J. E. (2005). Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish and Fisheries, 6(4), 281-306. doi:10.1111/j.1467-2979.2005.00197.xHattour, A.Contribution a l’étude des Scombridés de Tunisie. Université de Tunis. Faculté des Sciences, 168 pp. (1979).Karakulak, S., Oray, I., Corriero, A., Deflorio, M., Santamaria, N., Desantis, S., & De Metrio, G. (2004). Evidence of a spawning area for the bluefin tuna (Thunnus thynnus L.) in the eastern Mediterranean. Journal of Applied Ichthyology, 20(4), 318-320. doi:10.1111/j.1439-0426.2004.00561.xKoenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33. doi:10.2307/1913643Koenker, R. (2005). Quantile Regression. doi:10.1017/cbo9780511754098Milatou, N., & Megalofonou, P. (2014). Age structure and growth of bluefin tuna (Thunnus thynnus, L.) in the capture-based aquaculture in the Mediterranean Sea. Aquaculture, 424-425, 35-44. doi:10.1016/j.aquaculture.2013.12.037Perçin, F., & Akyol, O. (2009). Lengthâ weight and lengthâ length relationships of the bluefin tuna,Thunnus thynnusL., in the Turkish part of the eastern Mediterranean Sea. Journal of Applied Ichthyology, 25(6), 782-784. doi:10.1111/j.1439-0426.2009.01288.xPercin, F., & Akyol, O. (2010). Some Morphometric Relationships in Fattened Bluefin Tuna, Thunnus thynnus L., from the Turkish Aegean Sea. Journal of Animal and Veterinary Advances, 9(11), 1684-1688. doi:10.3923/javaa.2010.1684.1688Rooker, J. R., Alvarado Bremer, J. R., Block, B. A., Dewar, H., de Metrio, G., Corriero, A., … Secor, D. H. (2007). Life History and Stock Structure of Atlantic Bluefin Tuna (Thunnus thynnus). Reviews in Fisheries Science, 15(4), 265-310. doi:10.1080/10641260701484135Sinovcic, G., Franicevic, M., Zorica, B., & Cikes-Kec, V. (2004). Length-weight and length-length relationships for 10 pelagic fish species from the Adriatic Sea (Croatia). Journal of Applied Ichthyology, 20(2), 156-158. doi:10.1046/j.1439-0426.2003.00519.xTičina, V., Grubišić, L., Šegvić Bubić, T., & Katavić, I. (2011). Biometric characteristics of small Atlantic bluefin tuna (Thunnus thynnus, Linnaeus, 1758) of Mediterranean Sea origin. Journal of Applied Ichthyology, 27(4), 971-976. doi:10.1111/j.1439-0426.2011.01752.

    Optimal Strategy for Competence Differentiation in Bacteria

    Get PDF
    A phylogenetically diverse subset of bacterial species are naturally competent for transformation by DNA. Transformation entails recombination of genes between different lineages, representing a form of bacterial sex that increases standing genetic variation. We first assess whether homologous recombination by transformation is favored by evolution. Using stochastic population genetic computer simulations in which beneficial and deleterious mutations occur at many loci throughout the whole genome, we find that transformation can increase both the rate of adaptive evolution and the equilibrium level of fitness. Secondly, motivated by experimental observations of Bacillus subtilis, we assume that competence additionally entails a weak persister phenotype, i.e., the rates of birth and death are reduced for these cells. Consequently, persisters evolve more slowly than non-persisters. We show via simulation that strains which stochastically switch into and out of the competent phenotype are evolutionarily favored over strains that express only a single phenotype. Our model's simplicity enables us to derive and numerically solve a system of finite- deterministic equations that describe the evolutionary dynamics. The observed tradeoff between the benefit of recombination and the cost of persistence may explain the previously mysterious observation that only a fractional subpopulation of B. subtilis cells express competence. More generally, this work demonstrates that population genetic forces can give rise to phenotypic diversity even in an unchanging and homogeneous environment

    Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

    Get PDF
    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction

    Shells and humans: molluscs and other coastal resources from the earliest human occupations at the Mesolithic shell midden of El Mazo (Asturias, Northern Spain)

    Get PDF
    Human populations exploited coastal areas with intensity during the Mesolithic in Atlantic Europe, resulting in the accumulation of large shell middens. Northern Spain is one of the most prolific regions, and especially the so-called Asturian area. Large accumulations of shellfish led some scholars to propose the existence of intensification in the exploitation of coastal resources in the region during the Mesolithic. In this paper, shell remains (molluscs, crustaceans and echinoderms) from stratigraphic units 114 and 115 (dated to the early Mesolithic c. 9 kys cal BP) at El Mazo cave (Asturias, northern Spain) were studied in order to establish resource exploitation patterns and environmental conditions. Species representation showed that limpets, top shells and sea urchins were preferentially exploited. One-millimetre mesh screens were crucial in establishing an accurate minimum number of individuals for sea urchins and to determine their importance in exploitation patterns. Environmental conditions deduced from shell assemblages indicated that temperate conditions prevailed at the time of the occupation and the morphology of the coastline was similar to today (rocky exposed shores). Information recovered relating to species representation, collection areas and shell biometry reflected some evidence of intensification (reduced shell size, collection in lower areas of exposed shores, no size selection in some units and species) in the exploitation of coastal resources through time. However, the results suggested the existence of changes in collection strategies and resource management, and periods of intense shell collection may have alternated with times of shell stock recovery throughout the Mesolithic.This research was performed as part of the project “The human response to the global climatic change in a littoral zone: the case of the transition to the Holocene in the Cantabrian coast (10,000–5000 cal BC) (HAR2010-22115-C02-01)” funded by the Spanish Ministry of Economy and Competitiveness. AGE was funded by the University of Cantabria through a predoctoral grant and IGZ was funded by the Spanish Ministry of Economy and Competitiveness through a Juan de la Cierva grant. We also would like to thank the University of Cantabria and the IIIPC for providing support, David Cuenca-Solana, Alejandro García Moreno and Lucia Agudo Pérez for their help. We also thank Jennifer Jones for correcting the English. Comments from two anonymous reviewers helped to improve the paper

    Limits to the Rate of Adaptive Substitution in Sexual Populations

    Get PDF
    In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, , that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is , where is the population size, is the rate of beneficial mutations per genome, and is their mean selective advantage. Heritable variance in log fitness due to unlinked loci reduces by under polygamy and under monogamy. With a linear genetic map of length Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on , , , and only through the baseline density: . Under the approximation that the interference due to different sweeps adds up, we show that , implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for ; for higher , the rate of adaptation grows above , but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common—diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection

    The PROVENT-C19 registry: A study protocol for international multicenter SIAARTI registry on the use of prone positioning in mechanically ventilated patients with COVID-19 ARDS

    Get PDF
    Background The worldwide use of prone position (PP) for invasively ventilated patients with COVID-19 is progressively increasing from the first pandemic wave in everyday clinical practice. Among the suggested treatments for the management of ARDS patients, PP was recommended in the Surviving Sepsis Campaign COVID-19 guidelines as an adjuvant therapy for improving ventilation. In patients with severe classical ARDS, some authors reported that early application of prolonged PP sessions significantly decreases 28-day and 90-day mortality. Methods and analysis Since January 2021, the COVID19 Veneto ICU Network research group has developed and implemented nationally and internationally the "PROVENT-C19 Registry", endorsed by the Italian Society of Anesthesia Analgesia Resuscitation and Intensive Care. . .'(SIAARTI). The PROVENT-C19 Registry wishes to describe 1. The real clinical practice on the use of PP in COVID-19 patients during the pandemic at a National and International level; and 2. Potential baseline and clinical characteristics that identify subpopulations of invasively ventilated patients with COVID-19 that may improve daily from PP therapy. This web-based registry will provide relevant information on how the database research tools may improve our daily clinical practice. Conclusions This multicenter, prospective registry is the first to identify and characterize the role of PP on clinical outcome in COVID-19 patients. In recent years, data emerging from large registries have been increasingly used to provide real-world evidence on the effectiveness, quality, and safety of a clinical intervention. Indeed observation-based registries could be effective tools aimed at identifying specific clusters of patients within a large study population with widely heterogeneous clinical characteristics. Copyright
    corecore