107 research outputs found

    Hunting for the high-affinity state of G-protein coupled receptors with agonist tracers:Theoretical and practical considerations for positron emission tomography (PET) imaging

    Get PDF
    The concept of the high-affinity state postulates that a certain subset of G-protein-coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli, and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high-affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the non-invasive imaging of the high-affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high-affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high-affinity state in vivo are discussed

    Appearance-based odometry and mapping with feature descriptors for underwater robots

    Get PDF
    The use of Autonomous Underwater Vehicles (AUVs) for underwater tasks is a promising robotic field. These robots can carry visual inspection cameras. Besides serving the activities of inspection and mapping, the captured images can also be used to aid navigation and localization of the robots. Visual odometry is the process of determining the position and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of non-standard locomotion robotic methods. In this context, this paper proposes an approach to visual odometry and mapping of underwater vehicles. Supposing the use of inspection cameras, this proposal is composed of two stages: i) the use of computer vision for visual odometry, extracting landmarks in underwater image sequences and ii) the development of topological maps for localization and navigation. The integration of such systems will allow visual odometry, localization and mapping of the environment. A set of tests with real robots was accomplished, regarding online and performance issues. The results reveals an accuracy and robust approach to several underwater conditions, as illumination and noise, leading to a promissory and original visual odometry and mapping technique
    corecore