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Abstract: The use of Autonomous Underwater Vehicles (AUVs) for underwater tasks is a promising robotic field. These 
robots can carry visual inspection cameras. Besides serving the activities of inspection and mapping, the captured images 
can also be used to aid navigation and localization of the robots. Visual odometry is the process of determining the position 
and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of non-standard 
locomotion robotic methods. In this context, this paper proposes an approach to visual odometry and mapping of underwater 
vehicles. Supposing the use of inspection cameras, this proposal is composed of two stages: i) the use of computer vision 
for visual odometry, extracting landmarks in underwater image sequences and ii) the development of topological maps for 
localization and navigation. The integration of such systems will allow visual odometry, localization and mapping of the 
environment. A set of tests with real robots was accomplished, regarding online and performance issues. The results reveals 
an accuracy and robust approach to several underwater conditions, as illumination and noise, leading to a promissory and 
original visual odometry and mapping technique.
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1. Introduction
In mobile robot navigation, classical odometry is the 

process of determining the position and orientation of a 
vehicle by measuring the wheel rotations through devices 
such as rotary encoders. While useful for many wheeled or 
tracked vehicles, traditional odometry techniques cannot be 
applied to robots with non-standard locomotion methods. In 
addition, odometry universally suffers from precision prob-
lems, since wheels tend to slip and slide on the floor, and 
the error increases even more when the vehicle runs on non-
smooth surfaces. As the errors accumulate over time, the 
odometry readings become increasingly unreliable.

Visual odometry is the process of determining equiva-
lent odometry information using only camera images. 
Compared to traditional odometry techniques, visual odom-
etry is not restricted to a particular locomotion method, and 
can be utilized on any robot with a sufficiently high quality 
camera.

Autonomous Underwater Vehicles (AUVs) are mobile 
robots that can be applied to many tasks of difficult human 
exploration8. In underwater visual inspection, the vehicles can 
be equipped with down-looking cameras, usually attached to 
the robot structure11. These cameras capture images from the 

deep of the ocean. In these images, natural landmarks, also 
called keypoints in this work, can be detected allowing the 
AUV visual odometry.

In this paper we propose a new approach to AUV localiza-
tion and mapping. Our approach extract and map keypoints 
between consecutive images in underwater environment, 
building online keypoints maps. This maps can be used to 
robot localization and navigation.

We use Scale Invariant Feature Transform (SIFT), which 
is a robust invariant method to keypoints detection16. 
Furthermore, these keypoints are used as landmarks in an 
online topological mapping. We propose the use of self-
organizing maps (SOM) based on Kohonen maps15 and 
Growing Cell Strutures (GCS)9 that allow a consistent map 
construction even in presence of noisy information.

First the paper presents related works on visual odometry 
and mapping. Section 3 presents a detailed view of the our 
approach with SIFT algorithm and Self-Organizing Maps, 
followed by the implementation, test analysis and results 
with different undersea features. Finally, the conclusion of 
the study and future perspectives are presented.
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2. Related Works

Localization, navigation and mapping using vision-
based algoritms use visual landmarks to create visual maps 
of the environment. In the other hand the identification of 
landmarks underwater is a complex task due to the highly 
dynamic light conditions, decreasing visibility with depth 
and turbity, and image artifacts like aquatic snow. The extent 
to which the robot navigates, the map grows in size and 
complexity, increasing the computational cost and difficult 
to process in real time. Moreover, the efficiency of the data 
association, an important stage of the system, decreases as 
the complexity of the map augment. It is therefore important 
for these systems, extract a few, but representative, features/
keypoints (points of interest) of the environment.

The development of a variety of keypoint detectors was 
a result of trying to solve the problem of extracting points of 
interest in image sequences, Shi and Tomasi23, SIFT16, Speeded 
up robust features Descriptor (SURF)2, affine covariant etc. 
These proposals have mainly the same approach: extrac-
tion of points which represents regions with high intensity 
gradient and texture. This region represented by them are 
highly discriminatory and robust to noise and changes in 
illumination, point of view of the camera, etc.

Some approaches using SIFT for visual indoor Simulta-
neous Localization and Mapping (SLAM) were made by 
Se and Lowe21, 22. They use SIFT in a stereo visual system to 
detect the visual landmarks, together with odometry, using 
ego-motion estimation and the Kalman filter. The tests were 
made in structured environments with knew maps.

Several AUVs localization and mapping methods are 
based on mosaics.10, 13 Mahon and Willians17 propose a visual 
system for SLAM in underwater environment, using the 
Lucas-Kanade optical filter and extended Kalman filter (EKF), 
with aid of a sonar. Nicosevici et al.18 propose an identification 
of suitable interest points using geometric and photometric 
cues in motion video for 3D environmental modeling.

Booij3 has the most similar approach to the presented in 
this work. They do visual odometry with classical topological 
maps based on appearance. In this case, the SIFT method is 
used in omnidimentional images. However, this approach is 
validated only with mobile robots in terrestrial environment. 
The use of both i) SIFT to extract visual underwater features; 
and ii) SOM topological maps with Growing Cell Strutures for 
mapping and localization on underwater environment was 
not found in the literature.

3. A System for Visual Odometry
Figure 1 shows an overview of the approach proposed here. 

First, the underwater image is captured and pre-processed to 
removal of the radial distortion and others distortions caused 
by water diffraction. With the corrected image, keypoints are 
detected and local descriptors for each one of these points are 
computed by SIFT. Each keypoint has a n dimensional local 
descriptors and global pose informations. A matching stage 
provides a set of correlated keypoints between consecutive 
images. Considering all correlated points found, outliers are 
removed, using RANSAC7 and LMedS20 algorithms.

The relative motion between frames is estimated, using 
the correlated points and the homography matrix.

In addition, the keypoints are used to create and train the 
topological maps. A growing cell strutures algorithm is used 
to create the nodes and edges of the SOM. Each node has 
a n-dimensional weight. After a trainning stage, the system 
provides a topological map, where its nodes represent the 
main keypoints of the environment.

During the navigation, when a new image is captured, the 
system calcules its local descriptors, correlating them with 
the nodes of the current trainned SOM. To estimate the pose 
of the robot (center of the image), we use use the correlated 
points/nodes and the homography matrix concept. Thus, it 
is obtained the global position and orientation of the center of 
the image, provinding the localization of the robot.

Next, it is detailed each module of the proposed approach.
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Figure 1. Overview of the system proposed.
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3.1. Pre-processing

The distortion caused by the camera lenses can be repre-
sented by a radial and tangential approximation. As the 
radial component causes higher distortion, most of the works 
developed so far corrects only this component12.

In underwater environment, there is an additional distor-
tion caused by water diffraction. Equation 1 shows one 
method to solve this problem27, where m is the point without 
radial distortion with coordinates (mx, my), and m0 the new 
point without additional distortion; u0 and v0 are the central 

point coordinates. Also, +2 2
x yR = m m  and R0 are defined 

by 2 with focal distance f.
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3.2. Scale Invariant Feature Transform – SIFT

The Scale Invariant Feature Transform (SIFT) is an efficient 
filter to extract and describe keypoints of images16. It gener-
ates dense sets of image features, allowing matching under 
a wide range of image transformations (i.e. rotation, scale, 
perspective) an important aspect when imaging complex 
scenes at close range as in the case of underwater vision. The 
image descriptors are highly discriminative providing bases 
for data association in several tasks like visual odometry, 
loop closing, SLAM, etc.

First, the SIFT algorithm uses the Difference-of-Gaussian 
filter to detect potential interesting points in a space invariant 
to scale and rotation. The SIFT algorithm generates a scale 
space L(x, y, kσ) by convolving repeatedly an input image I(x, 
y) using a variable-scale Gaussian, G(x, y, σ), Equation 3:

σ σ ∗L(x,y, ) = G(x,y, ) I(x,y)  (3)

SIFT analyzes the images at different scales and extracts 
the keypoints, detecting scale-invariable image locations. The 
keypoints represent scale-space extrema in the difference-of-
Gaussian function D(x, y, σ) convolved with the image, see 4:

σ σ − σD(x,y, ) = (G(x,y,k ) G(x,y, )) * I(x,y)  (4)

where k is a constant multiplicative factor.
After the keypoints extraction, each feature is associated 

with a scale and an orientation vector. This vector represents 
the major direction of the local image gradient at the scale 
where the keypoint was extracted. The keypoint descriptor 
is obtained after rotating the nearby area of the feature 
according to the assigned orientation, thus achieving invari-
ance of the descriptor to rotation. The algorithm analyses 
images gradients in 4 × 4 windows around each keypoint, 
providing a 128 elements vector. This vector represents each 
set of feature descriptors. For each window a local orienta-

tion histogram with 8 bins is constructed. Thus, SIFT maps 
every feature as a point in a 128-dimension descriptor space.

A point to point distances computation between keypoints 
in the descriptors space provides the matching. To eliminate 
false matches, it is used an effective method to compare the 
smallest match distance to the second-best distance16, where 
through a threshold it is selected only close matches.

Furthermore, outliers are removed through RANSAC and 
LMedS, fitting an homography matrix H1. In this paper, this 
matrix can be fitted by both RANSAC and LMedS methods26. 
Both methods are considered only if the number of matching 
points is bigger than a predefined threshold tm.

3.3. Estimating the homography matrix and computing 
the camera pose

We use the homography concept to provide the camera 
pose. A homography matrix H is obtained from a set of 
correct matches, transforming homogeneous coordinates 
into non-homogeneous. The terms are operated in order to 
obtain a linear system14, considering the keypoints (x1, y1)…
(xn, yn) in the image I and (x1’, y1’)…(xn’, yn’) in the image I’ 
obtained by SIFT.

The current global pose of the robot can be estimated 
using Equation 5, where 1Hk+1 is the homography matrix 
between image I1 in the initial time and image Ik + 1 in the 
time k+1. The matrix 1H1 is defined by the identity matrix 3x3 
that consider the robot in the beginning position (0,0).

+ +∏
ik1

k 1 i 1
i=1

H = H  (5)

Thus, the SIFT provides a set of scale invariant keypoints, 
described by a feature vector. A frame has a m keypoints, and 
each keypoint, Xi, has 128 features, f1,…,f128 and the pose and 
scale (x, y, s):

i 1 2 128X = f , f ,  ..., f , x, y, s, i = 1,  ...,  m  (6)

These m vectors are used to obtain a topological map, 
detailed in the next section.

3.4. Topological maps

In this work, the vectors extracted from SIFT are used to 
compose a topological map. This map is obtained using a 
self-organizing mapping (SOM) based on Kohonen Neural 
Networks15 and the Growing Cell Structures (GCS) method9. 
Like most artificial neural networks, SOMs operate in two 
modes: training and mapping. Training builds the map using 
input examples. It is a competitive process, also called vector 
quantization. A low-dimensional (typically two dimensional) 
map discretizes the input space of the training samples. The 
map seeks to preserve the topological properties of the input 
space. A structure of this map consists of components called 
nodes or neurons. Associated with each node is a weight 
vector of the same dimension as the input data vectors and 
a position in the map space. Nodes are connected by edges, 
resulting in a (2D) grid.
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3.4.1 Building the map

Our proposal operates in Scale Invariant Feature vectors 
Space, SIFT space, instead of image space, in other words, our 
space has n = 131 values (128 by the SIFT’s descriptor vector 
and 3 by the feature’s pose). A Kohonen map must be created 
and trained to represent the space of descriptors. To build the 
map, feature vectors are presented to the SOM. The learning 
algorithm is based on the concept of nearest-neighbor learning 
using KD-Tree algorithm16. When a new input arrives, the 
topological map determines the feature vector of the reference 
node that best matches the input vector. As our system uses 
several feature vectors associated with each captured image, 
the nearest-neighbor algorithm is applied to each feature vector 
separately. The results of the nearest-neighbor algorithms are 
combined with a simple scheme based on unanimous voting.

The Growing Cell Structures method allows the creation and 
removal of the nodes during the learning process. The algoritm 
constrains the network topology to k-dimensional simplices 
whereby k is some positive integer chosen in advance. In this 
work, the basic building block and also the initial configuration 
of each network is a k = 2-dimensional simplex. For a given 
network configuration a number of adaptation steps are used 
to update the reference vectors of the nodes and to gather local 
error information at each node. This error information is used 
to decide where to insert new nodes. A new node is always 
inserted by splitting the longest edge emanating from the node 
q with maximum accumulated error. In doing this, additional 
edges are inserted such that the resulting structure consists 
exclusively of k-dimensional simplices again.

After a set of tranning steps, the kohonen map represents 
the descriptors space. This SOM can be used to locate the 
robot during the navigation.

3.4.2. Location the robot on the map

New frames are captured during the navigation. For each 
new frame F, SIFT calculates a set of m keypoints Xi, see equa-
tion 6. A n = 131 dimensional descriptor vector is associated 
to each keypoint. We use the trainned SOM to map/locate 
the robot in the environment. A mapping stage is runned 
m times. For each step i there will be one single winning 
neuron, Ni: the neuron whose weight vector lies closest to the 
input descriptor vector, Xi. This can be simply determined by 
calculating the Euclidean distance between input vector and 
weight vectors. After the m steps we have a set of m winner 
nodes, Ni, associated with each one feature descriptor, Xi. 
With the pose information of m pairs (Xi, Ni), we can use the 
homography concept to obtain a linear matrix transforma-
tion, HSOM. Equation 7 gives the map localization of the center 
of the frame, Xc’ = (xc’, yc’):

C SOM CX ' = H * X ,  (7)

where Xc is the position of the center of the frame.
Moreover the final topological map allows the navigation 

in two ways: through target positions or visual goals. From 
the current position, graph search algorithms like Dijkstra6 or 
A* algorithm5 can be used to search a path to the goal.

4. System Implementation, Tests and Results
In this work, it was developed the robot presented in 

Figure 2. This robot is equipped with a Tritech Typhoon Colour 
Underwater Video Camera with zoom, a miniking sonar and a 
set of sensors (altimeters and accelerometers)4. Due this robot is 
experimental phase, it is impossible to put it to work in the sea. 
The acquition of some reference to experiements is very hard 
in this kind of environment,too. Considering this situation, 
this work use a simulated underwater conditions proposed 
by Arredondo and Katia1. Using it, different undersea features 
were applied in the images, like turbidity, sea snow, non-linear 
illumination, and others, simulating different underwater 
conditions. Table 1 shows the applied features (filters).

The visual system was tested in a desktop Intel Core 2 
Quad Q6600 computer with 2Gb of DDR2-667 RAM. The 
camera is NTSC standard using 320x240 pixels at a maximum 
rate of 29.97 frames per second.

4.1. The method in different underwater features

The visual system was tested in five different underwater 
environments, corresponding the image without distortion 
and first four filters presented in Table 1 (the effects were 
artificially added to the images). Figure 3 enumerates the 
detected and matching keypoints obtained in a sequence of 
visual navigation. Even though the number of points and 
correlations has diminished with the quality loss because of 
underwater conditions, it is still possible to localize the robot, 
according Figure 4. In this figure, the motion referential is 
represented in blue (legended as “Odometry”), executed 

Table 1. Undersea Features For Each Distortion using in the tests.
 Distortion  1  2  3  4  5

Light Source Distance (m) 0.2 0.22 0.25 0.25 0.3 
Attenuation Value (%) 0.05 0.05 0.06 0.05 0.05 
Gaussian Noise (σ) 2 2 2 4 4
Gray Level Minimum  20 30 20 20 20 
 Number of Flakes of Sea Snow 30 30 30 30 30

Figure 2. ROVFURGII in test field.
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by a robotic arm composed by an Harmonic Drive PSA-80 
actuator with a coupled encoder supplying angular readings 
in each 0.651 ms, with a camera coupled to this. It allows the 
reference system a good precision, 50 0pulses per revolution. 
Therewith, it is possible to see that our approach is robust 
to underwater environment changes. All graphics showed in 
this paper use centimeter as metric unit, including Figure 4.

4.2. Online robotic localization

Tests was performed to evaluate the SIFT algorithm 
performance considering a comparison with another algo-
rithm for robotic localization in underwater environment: 
KLT19, 25, 24, 23.

Figure 5 shows the performance results using SIFT and 
KLT methods. SIFT has obtained an average rate of 4.4 fps 
over original images, without distortion, and a rate of 10.5 
fps with the use of filter 5, the worst distortion applied. KLT 
presented higher averages, 13.2 fps and 13.08 fps, respec-
tively. Note that SIFT has worst performance in high quality 
images because the large amount of detected points and, 
consequently, because the higher number of descriptors to 
be processed. The KLT, instead, keeps an almost constant 
performance. However, due to the slow dynamic associated 
with undersea vehicle motion, both methods can be applied 
to online AUV SLAM. The green cross represent the real final 
position and the metric unit is centimeter.

Figure 4. Position determinated by the robotic arm odometry and a 
visual system, without and with distortion.
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The SIFT results related to the robot localization were 
considered satisfactory, even with extreme environment 
distortions (filter 5). In the other hand, KLT gives unsatisfying 
results for both cases, once it is too much susceptible to the 
robot’s depth variation, or image scale, that occurs constantly 
in the AUV motion, despite the depth control.

4.3. Robustness to scale

Tests were performed to estimate the robustness of the 
proposed system to the sudden scale variation. In this case, a 
translation motion with height variation was performed with 
the camera to simulate a deeper movement of the robot in 
critical conditions.

The Figure 6 shows the SIFT results, considered satisfac-
tory, even in critical water conditions. Considering the use of 

some filters in extreme conditions, SIFT is superior to KLT 
although it shows an inexistent movement in Y axis. Over the 
tests, SIFT has shown an average rate of 6,22 fps over original 
images captured by the camera and a rate of 7.31 fps using 
filter 1 and 10.24 fps using filter 5. The KLT have shown 12.5, 
10.2 and 11.84 fps, respectively. The green cross represent the 
real final position, is the same for all graphics in the Figure 6, 
the metric unit is centimeter.

4.4. Topological maps

Tests to validate the mapping system proposed were 
performed. For example, during a navigation task a set of 
1.026 frames were captured. From these frames, a total of 
40.903 vectors are extracted from SIFT feature algorithm.

To build the map, 1026 frames and 40.903 keypoints are 
presented to the SOM. Figure 7 shows the final 2D map, 
discretizing the input space of the training samples.

4.4.1. Building the map

When a new keypoint arrives, the topological map 
determines the feature vector of the reference node that 
best matches the input vector. The Growing Cell Structures 
(GCS) method allows the creation and removal of the nodes 
during the learning process. Table 2 shows intermediate GCS 
adaptation steps with number of frames, keypoints and SOM 

Figure 6. Localization with translation and scale movement without 
and with distortion.
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Table 2. Building the map with GCS algorithm.
 Frames  Keypoints  Nodes 

 324  20.353  280 
 684  35813  345 

 1026  44903  443
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nodes. After the tranning stage (1026 frames), the kohonen 
map represents the relevant and noise tolerant descriptors 
space using a reduced number of nodes. This SOM can be 
used to locate the robot during the navigation.

4.1.2. Location of robot on the map

New frames are captured during the navigation. We use 
the trainned SOM to map/locate the robot in the environ-
ment. Figure 8 shows the estimated position of a navigation 
task. In this task the robot crosses three times the position 0.0. 
In this figure we can see the position estimated by both the 
SOM map (blue) and only by visual odometry (red). In the 
crossings, Table 3 shows the normalized errors of positioning 
in each of the methods. The reduced error associated with the 
SOM localization validates the robusteness of topologycal 
approach.

tages in relation to others methods, as KLT, in reason of its 
invariance to illumination conditions and perspective trans-
formations. The estimated localization is robust, comparing 
with the vehicle real pose.

Considering time performance, our proposal can be used 
to online AUV SLAM, even in very extreme sea conditions.

The correlations of interest points provided by SIFT were 
satisfying, even though with the presence of many outliers, 
i.e., false correlations. The proposal of use of fundamental 
matrix estimated in robust ways in order to remove outliers 
through RANSAC and LMedS algorithms shows good 
results.

The original integration of SIFT and topological maps 
with GCS for AUV navigation is a promissing field. The topo-
logical mapping based on Kohonen Nets and GCS showed 
potential to underwater SLAM applications using visual 
information due to its robustness to sensory impreciseness 
and low computational cost. The GCS stabilizes in a limited 
number of nodes sufficient to represent a large number of 
descriptors in a long sequence of frames. The SOM locali-
zation shows good results, validating its use with visual 
odometry.

As future work, we propose to detail the analysis of our 
topological mapping system, executing a set of tests with 
different scenarios and parameters. We intend to fusion 
different sensor information. The utilization of stereoscopic 
vision is also a possibility in order to provide more accuracy 
to the system. Finally, nowadays, tests with SURF algoritm 
are being done with similar results that SIFT.
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