132 research outputs found
A Linear-based Model for Multi-Microgrid Energy Sharing- A Western Australia Case Study
This paper proposes a model for energy sharing of interconnected microgrids (MGs), mainly where some MGs are owned by an entity, such as the government, which is the case study in Western Australia (WA). In the proposed model, MGs are able to trade energy among themselves when some of them have surplus generation, and others have lack of generations to meet their demand; however, they are obliged to pay for the use of distribution network, called network charge, and the share of network loss due to this energy transaction. In doing so, the network loss is taken into account and calculated through a power flow. The possibility of energy trading with the main grid is also considered through the wholesale electricity market. Considering the uncertainty of Photovoltaic (PV) generation and load involved, the decision making to inject or import energy to/from the main grid as well as to trade between MGs is obtained through a bi-level linear optimization. In the upper level, the distribution network operator intends to manage the energy exchange between MGs and energy trading with upstream grid, while in the lower level, each MG attempt to minimize its operational cost relating to PV and energy storage system (ESS). Finally, the proposed method is applied to a real project in Western Australia
Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films
Magnetic insulators (MIs) attract tremendous interest for spintronic
applications due to low Gilbert damping and absence of Ohmic loss. Magnetic
order of MIs can be manipulated and even switched by spin-orbit torques (SOTs)
generated through spin Hall effect and Rashba-Edelstein effect in heavy
metal/MI bilayers. SOTs on MIs are more intriguing than magnetic metals since
SOTs cannot be transferred to MIs through direct injection of electron spins.
Understanding of SOTs on MIs remains elusive, especially how SOTs scale with
the film thickness. Here, we observe the critical role of dimensionality on the
SOT efficiency by systematically studying the MI layer thickness dependent SOT
efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We first show
that the TmIG thin film evolves from two-dimensional to three-dimensional
magnetic phase transitions as the thickness increases, due to the suppression
of long-wavelength thermal fluctuation. Then, we report the significant
enhancement of the measured SOT efficiency as the thickness increases. We
attribute this effect to the increase of the magnetic moment density in concert
with the suppression of thermal fluctuations. At last, we demonstrate the
current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up
to 15 nm. The switching current density is comparable with those of heavy
metal/ferromagnetic metal cases. Our findings shed light on the understanding
of SOTs in MIs, which is important for the future development of ultrathin
MI-based low-power spintronics
Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Assessment of Substrate for Ventricular Tachycardia With Hemodynamic Compromise.
Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials
Parenteral provision of micronutrients to pediatric patients: an international expert consensus paper
© 2020 The Authors. Published by Wiley. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1002/jpen.1990INTRODUCTION:Micronutrients (vitamins and trace elements) are essential to all nutrition. For children and neonates who are dependent upon nutrition support therapies for growth and development, the prescribed regimen must supply all essential components. This paper aims to facilitate interpretation of existing clinical guidelines into practical approaches for the provision of micronutrients in pediatric parenteral nutrition. METHODS:An international, interdisciplinary expert panel was convened to review recent evidence-based guidelines and published literature to develop consensus- based recommendation on practical micronutrient provision in pediatric parenteral nutrition. RESULTS:The guidelines and evidence have been interpreted as answers to 10 commonly asked questions around the practical principles for provision and monitoring of micronutrients in pediatric patients CONCLUSION: Micronutrients are an essential part of all parenteral nutrition and should be included in the pediatric nutrition therapy care plan.Published versio
Gestational diabetes mellitus and retinal microvasculature.
BACKGROUND: Small-vessel dysfunction may be an important consequence of chronic hyperglycemia. We examined the association between gestational diabetes mellitus (GDM), a state of transient hyperglycemia during pregnancy, and retinal microvascular changes in pregnant women at 26-28 weeks of pregnancy. METHODS: A total of 1136 pregnant women with singleton pregnancies were recruited during their first trimester at two major Singapore maternity hospitals in an on-going birth cohort study. Participants underwent an oral glucose tolerance test and retinal imaging at 26-28 weeks gestation (n = 542). We used the 1999 World Health Organization (WHO) criteria to define GDM: ≥7.0 mmol/L for fasting glucose and/or ≥7.8 mmol/L for 2-h post-glucose. Retinal microvasculature was measured using computer software (Singapore I Vessel Analyzer, SIVA version 3.0, Singapore Eye Research Institute, Singapore) from the retinal photographs. RESULTS: In a multiple linear regression model adjusting for age, ethnicity and maternal education, mothers with GDM had narrower arteriolar caliber (-1.6 μm; 95% Confidence Interval [CI]: -3.1 μm, -0.2 μm), reduced arteriolar fractal dimension (-0.01 Df; 95% CI: -0.02 Df, -0.001 Df;), and larger arteriolar branching angle (1.8°; 95% CI: 0.3°, 3.3°) than mothers without GDM. After further adjusting for traditional risks of GDM, arteriolar branching angle remained significantly larger in mothers with GDM than those without GDM (2.0°; 95% CI: 0.5°, 3.6°). CONCLUSIONS: GDM was associated with a series of retinal arteriolar abnormalities, including narrower caliber, reduced fractal dimension and larger branching angle, suggesting that transient hyperglycemia during pregnancy may cause small-vessel dysfunction
Risk factors and prognosis of young stroke. The FUTURE study: A prospective cohort study. Study rationale and protocol
Contains fulltext :
98322.pdf (postprint version ) (Open Access)BACKGROUND: Young stroke can have devastating consequences with respect to quality of life, the ability to work, plan or run a family, and participate in social life. Better insight into risk factors and the long-term prognosis is extremely important, especially in young stroke patients with a life expectancy of decades. To date, detailed information on risk factors and the long-term prognosis in young stroke patients, and more specific risk of mortality or recurrent vascular events, remains scarce. METHODS/DESIGN: The FUTURE study is a prospective cohort study on risk factors and prognosis of young ischemic and hemorrhagic stroke among 1006 patients, aged 18-50 years, included in our study database between 1-1-1980 and 1-11-2010. Follow-up visits at our research centre take place from the end of 2009 until the end of 2011. Control subjects will be recruited among the patients' spouses, relatives or social environment. Information on mortality and incident vascular events will be retrieved via structured questionnaires. In addition, participants are invited to the research centre to undergo an extensive sub study including MRI. DISCUSSION: The FUTURE study has the potential to make an important contribution to increase the knowledge on risk factors and long-term prognosis in young stroke patients. Our study differs from previous studies by having a maximal follow-up of more than 30 years, including not only TIA and ischemic stroke but also hemorrhagic stroke, the addition of healthy controls and prospectively collect data during an extensive follow-up visit. Completion of the FUTURE study may provide better information for treating physicians and patients with respect to the prognosis of young stroke.8 p
Expression of Transient Receptor Potential Ankyrin 1 (TRPA1) and Its Role in Insulin Release from Rat Pancreatic Beta Cells
<div><h3>Objective</h3><p>Several transient receptor potential (TRP) channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1) ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.</p> <h3>Methods</h3><p>Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca<sup>2+</sup> fluorescence imaging and electrophysiology (voltage- and current-clamp) techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.</p> <h3>Results</h3><p>TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), 4-hydroxynonenal (4-HNE), and cyclopentenone prostaglandins (PGJ<sub>2</sub>) and a novel agonist methylglyoxal (MG) induces membrane current, depolarization, and Ca<sup>2+</sup> influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na<sup>+</sup> and Ca<sup>2+</sup> channel blockade as well as ATP sensitive potassium (K<sub>ATP</sub>) channel activation.</p> <h3>Conclusions</h3><p>We propose that endogenous and exogenous ligands of TRPA1 cause Ca<sup>2+</sup> influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K<sub>ATP</sub> channel blockade to facilitate insulin release.</p> </div
Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol
Contains fulltext :
96704.pdf (publisher's version ) (Open Access)BACKGROUND: Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. METHODS/DESIGN: The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. DISCUSSION: The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism
The Heart Is an Early Target of Anthrax Lethal Toxin in Mice: A Protective Role for Neuronal Nitric Oxide Synthase (nNOS)
Anthrax lethal toxin (LT) induces vascular insufficiency in experimental animals through unknown mechanisms. In this study, we show that neuronal nitric oxide synthase (nNOS) deficiency in mice causes strikingly increased sensitivity to LT, while deficiencies in the two other NOS enzymes (iNOS and eNOS) have no effect on LT-mediated mortality. The increased sensitivity of nNOS−/− mice was independent of macrophage sensitivity to toxin, or cytokine responses, and could be replicated in nNOS-sufficient wild-type (WT) mice through pharmacological inhibition of the enzyme with 7-nitroindazole. Histopathological analyses showed that LT induced architectural changes in heart morphology of nNOS−/− mice, with rapid appearance of novel inter-fiber spaces but no associated apoptosis of cardiomyocytes. LT-treated WT mice had no histopathology observed at the light microscopy level. Electron microscopic analyses of LT-treated mice, however, revealed striking pathological changes in the hearts of both nNOS−/− and WT mice, varying only in severity and timing. Endothelial/capillary necrosis and degeneration, inter-myocyte edema, myofilament and mitochondrial degeneration, and altered sarcoplasmic reticulum cisternae were observed in both LT-treated WT and nNOS−/− mice. Furthermore, multiple biomarkers of cardiac injury (myoglobin, cardiac troponin-I, and heart fatty acid binding protein) were elevated in LT-treated mice very rapidly (by 6 h after LT injection) and reached concentrations rarely reported in mice. Cardiac protective nitrite therapy and allopurinol therapy did not have beneficial effects in LT-treated mice. Surprisingly, the potent nitric oxide scavenger, carboxy-PTIO, showed some protective effect against LT. Echocardiography on LT-treated mice indicated an average reduction in ejection fraction following LT treatment in both nNOS−/− and WT mice, indicative of decreased contractile function in the heart. We report the heart as an early target of LT in mice and discuss a protective role for nNOS against LT-mediated cardiac damage
- …