14 research outputs found

    New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens

    Get PDF
    Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day ‘modern’ morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens1 or evolved gradually over the last 400 thousand years2. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315?±?34 thousand years (as determined by thermoluminescence dating)3, this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent

    Supraorbital morphology and social dynamics in human evolution

    Get PDF
    Uniquely, with respect to Middle Pleistocene hominins, anatomically modern humans do not possess marked browridges, and have a more vertical forehead with mobile eyebrows that play a key role in social signalling and communication. The presence and variability of browridges in archaic Homo and their absence in ourselves have led to debate concerning their morphogenesis and function, with two main hypotheses being put forward; that browridge morphology is the result of the spatial relationship between the orbits and the braincase, and that browridge morphology is significantly impacted by biting mechanics. Here we virtually manipulate browridge morphology of an archaic hominin (Kabwe 1), showing that it is much larger than the minimum required to fulfil spatial demands and that browridge size has little impact on mechanical performance during biting. Since browridge morphology in this fossil is not driven by spatial and mechanical requirements alone, the role of the supraorbital region in social communication is a potentially significant factor. We propose that conversion of the large browridges of our immediate ancestors to a more vertical frontal in modern humans allowed highly mobile eyebrows to display subtle affiliative emotions

    Endocasts and the evo-devo approach to study human brain evolution

    No full text
    The brain is a highly plastic organ and is shaped not only during prenatal but also during postnatal development. The analysis and comparison of ontogenetic patterns of endocranial size increase and endocranial shape changes can therefore add further evidence for the interpretation of hominin brain evolution. Here we focus on digital endocast data and the methodology used to document and compare developmental patterns of endocranial shape changes. We outline how geometric morphometrics of endocranial landmark data can be used in an evo-devo approach to human brain evolution, discuss how developmental simulations help to compare ontogenetic patterns among species, present different visualization techniques that help to interpret ontogenetic shape changes, provide an overview of our current knowledge, present new data on early postnatal shape changes in apes, and discuss open questions

    Standardisation in 3D Geometric Morphometrics: Ethics, Ownership, and Methods

    Get PDF
    The collection and analysis of 3D digital data is a rapidly growing field in archaeology, anthropology, and forensics. Even though the 3D scanning of human remains in archaeology has been conducted for over 10 years, it is still frequently considered as a new field. Despite this, the availability of 3D scanning equipment and the number of studies employing these methods are increasing rapidly, and it is arguably damaging to the validity of this field to continue to consider these methods new and therefore not subject to the same standardisations as other researches. This paper considers the current issues regarding the lack of standardisation in the methods, ethics, and ownership of 3D digital data with a focus on human remains research. The aim of this paper is to stimulate further research and discussion, allowing this field to develop, improving the quality and value of future research
    corecore