25 research outputs found

    The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    Get PDF
    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants

    Deciphering the Chemical Basis of Nestmate Recognition

    Get PDF
    Social insects maintain colony cohesion by recognizing and, if necessary, discriminating against conspecifics that are not part of the colony. This recognition ability is encoded by a complex mixture of cuticular hydrocarbons (CHCs), although it is largely unclear how social insects interpret such a multifaceted signal. CHC profiles often contain several series of homologous hydrocarbons, possessing the same methyl branch position but differing in chain length (e.g., 15-methyl-pentatriacontane, 15-methyl-heptatriacontane, 15-methyl-nonatriacontane). Recent studies have revealed that within species these homologs can occur in correlated concentrations. In such cases, single compounds may convey the same information as the homologs. In this study, we used behavioral bioassays to explore how social insects perceive and interpret different hydrocarbons. We tested the aggressive response of Argentine ants, Linepithema humile, toward nest-mate CHC profiles that were augmented with one of eight synthetic hydrocarbons that differed in branch position, chain length, or both. We found that Argentine ants showed similar levels of aggression toward nest-mate CHC profiles augmented with compounds that had the same branch position but differed in chain length. Conversely, Argentine ants displayed different levels of aggression toward nest-mate CHC profiles augmented with compounds that had different branch positions but the same chain length. While this was true in almost all cases, one CHC we tested elicited a greater aggressive response than its homologs. Interestingly, this was the only compound that did not occur naturally in correlated concentrations with its homologs in CHC profiles. Combined, these data suggest that CHCs of a homologous series elicit the same aggressive response because they convey the same information, rather than Argentine ants being unable to discriminate between different homologs. This study contributes to our understanding of the chemical basis of nestmate recognition by showing that, similar to spoken language, the chemical language of social insects contains “synonyms,” chemicals that differ in structure, but not meaning

    A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella Typhi at pathogenwatch.

    Get PDF
    As whole-genome sequencing capacity becomes increasingly decentralized, there is a growing opportunity for collaboration and the sharing of surveillance data within and between countries to inform typhoid control policies. This vision requires free, community-driven tools that facilitate access to genomic data for public health on a global scale. Here we present the Pathogenwatch scheme for Salmonella enterica serovar Typhi (S. Typhi), a web application enabling the rapid identification of genomic markers of antimicrobial resistance (AMR) and contextualization with public genomic data. We show that the clustering of S. Typhi genomes in Pathogenwatch is comparable to established bioinformatics methods, and that genomic predictions of AMR are highly concordant with phenotypic susceptibility data. We demonstrate the public health utility of Pathogenwatch with examples selected from >4,300 public genomes available in the application. Pathogenwatch provides an intuitive entry point to monitor of the emergence and spread of S. Typhi high risk clones

    TRPA1- FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p

    Get PDF
    YesRecent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD) where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline rich motif. Here, we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2 hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.Faculty of Biological Sciences at the University of Leeds, Wellcome Trust Seed Award, Royal Society Research Grant RG150100, MR/K021303/1, Swedish Research Council (2014-3801) and the Medical Faculty at Lund University

    Identifying Canadian Freshwater Fishes through DNA Barcodes

    Get PDF
    BACKGROUND: DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. METHODOLOGY/PRINCIPAL FINDINGS: We bi-directionally sequenced the standard 652 bp "barcode" region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. CONCLUSIONS/SIGNIFICANCE: The present study evidenced that freshwater fish species can be efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics

    Increased Inter-Colony Fusion Rates Are Associated with Reduced COI Haplotype Diversity in an Invasive Colonial Ascidian Didemnum vexillum

    Get PDF
    Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species
    corecore