203 research outputs found

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure

    An individually-tailored multifactorial intervention program for older fallers in a middle-income developing country: Malaysian Falls Assessment and Intevention Trial (MyFAIT)

    Get PDF
    Background: In line with a rapidly ageing global population, the rise in the frequency of falls will lead to increased healthcare and social care costs. This study will be one of the few randomized controlled trials evaluating a multifaceted falls intervention in a low-middle income, culturally-diverse older Asian community. The primary objective of our paper is to evaluate whether individually tailored multifactorial interventions will successfully reduce the number of falls among older adults. Methods: Three hundred community-dwelling older Malaysian adults with a history of (i) two or more falls, or (ii) one injurious fall in the past 12 months will be recruited. Baseline assessment will include cardiovascular, frailty, fracture risk, psychological factors, gait and balance, activities of daily living and visual assessments. Fallers will be randomized into 2 groups: to receive tailored multifactorial interventions (intervention group); or given lifestyle advice with continued conventional care (control group). Multifactorial interventions will target 6 specific risk factors. All participants will be re-assessed after 12 months. The primary outcome measure will be fall recurrence, measured with monthly falls diaries. Secondary outcomes include falls risk factors; and psychological measures including fear of falling, and quality of life.Previous studies evaluating multifactorial interventions in falls have reported variable outcomes. Given likely cultural, personal, lifestyle and health service differences in Asian countries, it is vital that individually-tailored multifaceted interventions are evaluated in an Asian population to determine applicability of these interventions in our setting. If successful, these approaches have the potential for widespread application in geriatric healthcare services, will reduce the projected escalation of falls and fall-related injuries, and improve the quality of life of our older community

    On-going collaborative priority-setting for research activity: a method of capacity building to reduce the research-practice translational gap

    Get PDF
    Background: International policy suggests that collaborative priority setting (CPS) between researchers and end users of research should shape the research agenda, and can increase capacity to address the research-practice translational gap. There is limited research evidence to guide how this should be done to meet the needs of dynamic healthcare systems. One-off priority setting events and time-lag between decision and action prove problematic. This study illustrates the use of CPS in a UK research collaboration called Collaboration and Leadership in Applied Health Research and Care (CLAHRC). Methods: Data were collected from a north of England CLAHRC through semi-structured interviews with 28 interviewees and a workshop of key stakeholders (n = 21) including academics, NHS clinicians, and managers. Documentary analysis of internal reports and CLAHRC annual reports for the first two and half years was also undertaken. These data were thematically coded. Results: Methods of CPS linked to the developmental phase of the CLAHRC. Early methods included pre-existing historical partnerships with on-going dialogue. Later, new platforms for on-going discussions were formed. Consensus techniques with staged project development were also used. All methods demonstrated actual or potential change in practice and services. Impact was enabled through the flexibility of research and implementation work streams; ‘matched’ funding arrangements to support alignment of priorities in partner organisations; the size of the collaboration offering a resource to meet project needs; and the length of the programme providing stability and long term relationships. Difficulties included tensions between being responsive to priorities and the possibility of ‘drift’ within project work, between academics and practice, and between service providers and commissioners in the health services. Providing protected ‘matched’ time proved difficult for some NHS managers, which put increasing work pressure on them. CPS is more time consuming than traditional approaches to project development. Conclusions: CPS can produce needs-led projects that are bedded in services using a variety of methods. Contributing factors for effective CPS include flexibility in use and type of available resources, flexible work plans, and responsive leadership. The CLAHRC model provides a translational infrastructure that enables CPS that can impact on healthcare systems

    Polar or Apolar—The Role of Polarity for Urea-Induced Protein Denaturation

    Get PDF
    Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 µs of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted) for hyperpolar urea. These results strongly suggest that apolar urea–protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity

    Mathematical model describing erythrocyte sedimentation rate. Implications for blood viscosity changes in traumatic shock and crush syndrome

    Get PDF
    BACKGROUND: The erythrocyte sedimentation rate (ESR) is a simple and inexpensive laboratory test, which is widespread in clinical practice, for assessing the inflammatory or acute response. This work addresses the theoretical and experimental investigation of sedimentation a single and multiple particles in homogeneous and heterogeneous (multiphase) medium, as it relates to their internal structure (aggregation of solid or deformed particles). METHODS: The equation system has been solved numerically. To choose finite analogs of derivatives we used the schemes of directional differences. RESULTS: (1) Our model takes into account the influence of the vessel wall on group aggregation of particles in tubes as well as the effects of rotation of particles, the constraint coefficient, and viscosity of a mixture as a function of the volume fraction. (2) This model can describe ESR as a function of the velocity of adhesion of erythrocytes; (3) Determination of the ESR is best conducted at certain time intervals, i.e. in a series of periods not exceeding 5 minutes each; (4) Differential diagnosis of various diseases by means of ESR should be performed using the aforementioned timed measurement of ESR; (5) An increase in blood viscosity during trauma results from an increase in rouleaux formation and the time-course method of ESR will be useful in patients with trauma, in particular, with traumatic shock and crush syndrome. CONCLUSION: The mathematical model created in this study used the most fundamental differential equations that have ever been derived to estimate ESR. It may further our understanding of its complex mechanism

    Modeling the Control of Trypanosomiasis Using Trypanocides or Insecticide-Treated Livestock

    Get PDF
    In Uganda, cattle are an important reservoir for Trypanosoma brucei rhodesiense, the causative agent of Rhodesian sleeping sickness (human African trypanosomiasis), transmitted by tsetse flies Glossina fuscipes fuscipes, which feed on cattle, humans, and wild vertebrates, particularly monitor lizards. Trypanosomiasis can be controlled by treating livestock with trypanocides or insecticide – killing parasites or vectors, respectively. Mathematical modeling of trypanosomiasis was used to compare the impact of drug- and insecticide-based interventions on R0 with varying densities of cattle, humans and wild hosts. Intervention impact changes with the number of cattle treated and the proportion of bloodmeals tsetse take from cattle. R0 was always reduced more by treating cattle with insecticide rather than trypanocides. In the absence of wild hosts, the model suggests that control of sleeping sickness (R0<1) could be achieved by treating ∼65% of cattle with trypanocides or ∼20% with insecticide. Required coverage increases as wild mammals provide increasing proportion of tsetse bloodmeals: if 60% of non-human bloodmeals are from wild hosts then all cattle have to be treated with insecticide. Conversely, it is reduced if lizards, which do not harbor trypanosomes, are important hosts and/or if insecticides are used at a scale where tsetse numbers decline
    • …
    corecore