190 research outputs found

    FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis

    Get PDF
    Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ

    Contribution of Distinct Homeodomain DNA Binding Specificities to Drosophila Embryonic Mesodermal Cell-Specific Gene Expression Programs

    Get PDF
    Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I–HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.National Institutes of Health (U.S.) (Grant R01 HG005287

    Extrinsic primary afferent signalling in the gut

    Get PDF
    Visceral sensory neurons activate reflex pathways that control gut function and also give rise to important sensations, such as fullness, bloating, nausea, discomfort, urgency and pain. Sensory neurons are organised into three distinct anatomical pathways to the central nervous system (vagal, thoracolumbar and lumbosacral). Although remarkable progress has been made in characterizing the roles of many ion channels, receptors and second messengers in visceral sensory neurons, the basic aim of understanding how many classes there are, and how they differ, has proven difficult to achieve. We suggest that just five structurally distinct types of sensory endings are present in the gut wall that account for essentially all of the primary afferent neurons in the three pathways. Each of these five major structural types of endings seems to show distinctive combinations of physiological responses. These types are: 'intraganglionic laminar' endings in myenteric ganglia; 'mucosal' endings located in the subepithelial layer; 'muscular–mucosal' afferents, with mechanosensitive endings close to the muscularis mucosae; 'intramuscular' endings, with endings within the smooth muscle layers; and 'vascular' afferents, with sensitive endings primarily on blood vessels. 'Silent' afferents might be a subset of inexcitable 'vascular' afferents, which can be switched on by inflammatory mediators. Extrinsic sensory neurons comprise an attractive focus for targeted therapeutic intervention in a range of gastrointestinal disorders.Australian National Health and Medical Research Counci

    The effect of acetaminophen (four grams a day for three consecutive days) on hepatic tests in alcoholic patients – a multicenter randomized study

    Get PDF
    Background: Hepatic failure has been associated with reported therapeutic use of acetaminophen by alcoholic patients. The highest risk period for alcoholic patients is immediately after discontinuation of alcohol intake. This period exhibits the largest increase in CYP2E1 induction and lowest glutathione levels. Our hypothesis was that common liver tests would be unaffected by administration of the maximum recommended daily dosage of acetaminophen for 3 consecutive days to newly-abstinent alcoholic subjects. Methods: Adult alcoholic subjects entering two alcohol detoxification centers were enrolled in a prospective double-blind, randomized, placebo-controlled trial. Subjects were randomized to acetaminophen, 4 g/day, or placebo for 3 consecutive days. The study had 95% probability of detecting a 15 IU/L difference in serum ALT. Results: A total of 443 subjects were enrolled: 308 (258 completed) received acetaminophen and 135 subjects (114 completed) received placebo. Study groups did not differ in demographics, alcohol consumption, nutritional status or baseline laboratory assessments. The peak mean ALT activity was 57 [plus or minus] 45 IU/L and 55 [plus or minus] 48 IU/L in the acetaminophen and placebo groups, respectively. Subgroup analyses for subjects presenting with an elevated ALT, subjects fulfilling a diagnosis of alcoholic hepatitis and subjects attaining a peak ALT greater than 200 IU/L showed no statistical difference between the acetaminophen and control groups. The one participant developing an increased international normalized ratio was in the placebo group. Conclusion: Alcoholic patients treated with the maximum recommended daily dose of acetaminophen for 3 consecutive days did not develop increases in serum transaminase or other measures of liver injury. Treatment of pain or fever for 3 days with acetaminophen appears safe in newly-abstinent alcoholic patients, such as those presenting for acute medical care.Funding for this study was provided by McNeil Consumer Healthcare to the Denver Health Authority, Denver, Colorado

    Aurora kinase-C-T191D is constitutively active mutant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora kinases (Aurora-A, B and C) belong to a family of conserved serine/threonine kinases which are key regulators of cell cycle progression. Aurora-A and Aurora-B are expressed in somatic cells and involved in cell cycle regulation while aurora-C is meiotic chromosome passenger protein. As Aurora kinase C is rarely expressed in normal somatic cells and has been found over expressed in many cancer lines. It is suggested that Aurora-C-T191D is not hyperactive mutant.</p> <p>Result</p> <p>Aurora-C-T191D variant form was investigated and compared with wild type. The overexpression of Aurora-C-T191D was observed that it behaves like Aurora-C wild type (aurC-WT). Both Aurora-C-T191D and aurC-WT induce abnormal cell division resulting in centrosome amplification and multinucleation in transiently transfected cells as well as in stable cell lines. Similarly, Aurora-C-T191D and aurC-WT formed foci of colonies when grown on soft agar, indicating that a gain of Aurora-C activity is sufficient to transform cells. Furthermore, we reported that NIH-3 T3 stable cell lines overexpressing Aurora-C-T191D and its wild type partner induced tumour formation when injected into nude mice, demonstrating the oncogenic activity of enzymatically active Aurora kinase C. Interestingly enough tumour aggressiveness was positively correlated with the rate of kinase activity, making Aurora-C a potential anti-cancer therapeutic target.</p> <p>Conclusion</p> <p>These findings proved that Aurora C-T191D is not hyperactive but is constitutively active mutant.</p

    The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case-control study

    Get PDF
    Background: The Int7G24A variant of transforming growth factor-beta receptor type I (TGFBR1) has been shown to increase the risk for kidney, ovarian, bladder, lung and breast cancers. Its role in colorectal cancer (CRC) has not been established. The aims of this study were to assess the association of TGFBR1*Int7G24A variant with CRC occurrence, patient age, gender, tumour location and stage. Methods: We performed a case-control study with 504 cases of sporadic CRC; and 504 non-cancerous age, gender and ethnically matched controls. Genotyping analysis was performed using allelic discrimination assay by real time PCR. Results: The Int7G24A variant was associated with increased CRC incidence in an additive model of inheritance (P for trend = 0.005). No significant differences were found between Int7G24A genotypes and tumour location or stage. Interestingly, the association of the Int7G24A variant with CRC risk was significant in men (odds ratio 4.10 with 95% confidence intervals 1.41-11.85 for homozygous individuals; P for trend = 0.00023), but not in women. We also observed an increase in susceptibility to CRC for individuals aged less than 70 years. Conclusion: Our data suggest that the Int7G24A variant represents a risk factor for CRC in the male Spanish population.Research supported in part by grants from the Generalitat Valenciana in Spain (AP106/06) and the Biomedical Research Foundation from the Hospital of Elche, Spain (FIBElx-02/2007). T.M-B is recipient of a fellowship from the Spanish Society of Medical Oncology (SEOM)

    Genome-Wide Tissue-Specific Occupancy of the Hox Protein Ultrabithorax and Hox Cofactor Homothorax in Drosophila

    Get PDF
    The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly

    Yes, I Am Ready Now: Differential Effects of Paced versus Unpaced Mating on Anxiety and Central Oxytocin Release in Female Rats

    Get PDF
    Sexual activity and partner intimacy results in several positive consequences in the context of stress-coping, both in males and females, such as reduced state anxiety in male rats after successful mating. However, in female rats, mating is a rewarding experience only when the estrous female is able to control sexual interactions, i.e., under paced-mating conditions. Here, we demonstrate that sex-steroid priming required for female mating is anxiolytic; subsequent sexual activity under paced mating conditions did not disrupt this anxiolytic priming effect, whereas mating under unpaced conditions increased anxiety-related behavior. In primed females, the release of the neuropeptide oxytocin (OT) within the hypothalamic paraventricular nucleus was found to be elevated and to further increase during paced, but not unpaced mating. Central administration of an OT receptor antagonist partly prevented priming/mating-induced anxiolysis indicating the involvement of brain OT in the anxiolysis triggered by priming and/or sexual activity

    Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate

    Get PDF
    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution

    Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT

    Get PDF
    International audienceBACKGROUND: The Aurora kinase family members, Aurora-A, -B and -C, are involved in the regulation of mitosis, and alterations in their expression are associated with cell malignant transformation. To date no information on the expression of these proteins in medullary thyroid carcinoma (MTC) are available. We here investigated the expression of the Aurora kinases in human MTC tissues and their potential use as therapeutic targets. METHODS: The expression of the Aurora kinases in 26 MTC tissues at different TNM stages was analyzed at the mRNA level by quantitative RT-PCR. We then evaluated the effects of the Aurora kinase inhibitor MK-0457 on the MTC derived TT cell line proliferation, apoptosis, soft agar colony formation, cell cycle and ploidy. RESULTS: The results showed the absence of correlation between tumor tissue levels of any Aurora kinase and tumor stage indicating the lack of prognostic value for these proteins. Treatment with MK-0457 inhibited TT cell proliferation in a time- and dose-dependent manner with IC50 = 49.8 ± 6.6 nM, as well as Aurora kinases phosphorylation of substrates relevant to the mitotic progression. Time-lapse experiments demonstrated that MK-0457-treated cells entered mitosis but were unable to complete it. Cytofluorimetric analysis confirmed that MK-0457 induced accumulation of cells with ≥ 4N DNA content without inducing apoptosis. Finally, MK-0457 prevented the capability of the TT cells to form colonies in soft agar. CONCLUSIONS: We demonstrate that Aurora kinases inhibition hampered growth and tumorigenicity of TT cells, suggesting its potential therapeutic value for MTC treatment
    corecore