138 research outputs found

    The influence of personality and ability on undergraduate teamwork and team performance

    Get PDF
    The ability to work effectively on a team is highly valued by employers, and collaboration among students can lead to intrinsic motivation, increased persistence, and greater transferability of skills. Moreover, innovation often arises from multidisciplinary teamwork. The influence of personality and ability on undergraduate teamwork and performance is not comprehensively understood. An investigation was undertaken to explore correlations between team outcomes, personality measures and ability in an undergraduate population. Team outcomes included various self-, peer- and instructor ratings of skills, performance, and experience. Personality measures and ability involved the Five-Factor Model personality traits and GPA. Personality, GPA, and teamwork survey data, as well as instructor evaluations were collected from upper division team project courses in engineering, business, political science, and industrial design at a large public university. Characteristics of a multidisciplinary student team project were briefly examined. Personality, in terms of extraversion scores, was positively correlated with instructors’ assessment of team performance in terms of oral and written presentation scores, which is consistent with prior research. Other correlations to instructor-, students’ self- and peer-ratings were revealed and merit further study. The findings in this study can be used to understand important influences on successful teamwork, teamwork instruction and intervention and to understand the design of effective curricula in this area moving forward

    Knowledge-Driven Multi-Locus Analysis Reveals Gene-Gene Interactions Influencing HDL Cholesterol Level in Two Independent EMR-Linked Biobanks

    Get PDF
    Genome-wide association studies (GWAS) are routinely being used to examine the genetic contribution to complex human traits, such as high-density lipoprotein cholesterol (HDL-C). Although HDL-C levels are highly heritable (h2∼0.7), the genetic determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this discrepancy may include rare variants, structural variants, gene-environment (GxE) interactions, and gene-gene (GxG) interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in the context of comprehensive electronic medical records (EMRs). Here we apply an EMR-based phenotyping approach, within the context of routine care, to replicate several known associations between HDL-C and previously characterized genetic variants: CETP (rs3764261, pβ€Š=β€Š1.22e-25), LIPC (rs11855284, pβ€Š=β€Š3.92e-14), LPL (rs12678919, pβ€Š=β€Š1.99e-7), and the APOA1/C3/A4/A5 locus (rs964184, pβ€Š=β€Š1.06e-5), all adjusted for age, gender, body mass index (BMI), and smoking status. By using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between LPL (which modulates the incorporation of triglyceride into HDL) and ABCA1 (which modulates the incorporation of free cholesterol into HDL). These results demonstrate that gene-gene interactions modulate complex human traits, including HDL cholesterol

    Habitat Composition and Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK Conurbation

    Get PDF
    Background: Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings: We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km 2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of,60 % built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species

    The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, tuberculosis (TB) was responsible for 2.5% of global mortality (among men 3.1%; among women 1.8%) and 2.2% of global burden of disease (men 2.7%; women 1.7%). The present work portrays accumulated evidence on the association between alcohol consumption and TB with the aim to clarify the nature of the relationship.</p> <p>Methods</p> <p>A systematic review of existing scientific data on the association between alcohol consumption and TB, and on studies relevant for clarification of causality was undertaken.</p> <p>Results</p> <p>There is a strong association between heavy alcohol use/alcohol use disorders (AUD) and TB. A meta-analysis on the risk of TB for these factors yielded a pooled relative risk of 2.94 (95% CI: 1.89-4.59). Numerous studies show pathogenic impact of alcohol on the immune system causing susceptibility to TB among heavy drinkers. In addition, there are potential social pathways linking AUD and TB. Heavy alcohol use strongly influences both the incidence and the outcome of the disease and was found to be linked to altered pharmacokinetics of medicines used in treatment of TB, social marginalization and drift, higher rate of re-infection, higher rate of treatment defaults and development of drug-resistant forms of TB. Based on the available data, about 10% of the TB cases globally were estimated to be attributable to alcohol.</p> <p>Conclusion</p> <p>The epidemiological and other evidence presented indicates that heavy alcohol use/AUD constitute a risk factor for incidence and re-infection of TB. Consequences for prevention and clinical interventions are discussed.</p

    Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Hemochromatosis (HH) is a genetic disease associated with iron overload, in which individuals homozygous for the mutant C282Y <it>HFE </it>associated allele are at risk for the development of a range of disorders particularly liver disease. Conformational diseases are a class of disorders associated with the expression of misfolded protein. HFE C282Y is a mutant protein that does not fold correctly and consequently is retained in the Endoplasmic Reticulum (ER). In this context, we sought to identify ER stress signals associated with mutant C282Y HFE protein expression, which may have a role in the molecular pathogenesis of HH.</p> <p>Results</p> <p>Vector constructs of Wild type HFE and Mutant C282Y HFE were made and transfected into HEK293 cell lines. We have shown that expression of C282Y HFE protein triggers both an unfolded protein response (UPR), as revealed by the increased GRP78, ATF6 and CHOP expression, and an ER overload response (EOR), as indicated by NF-ΞΊB activation. Furthermore, C282Y HFE protein induced apoptotic responses associated with activation of ER stress. Inhibition studies demonstrated that tauroursodeoxycholic acid, an endogenous bile acid, downregulates these events. Finally, we found that the co-existence of both C282Y HFE and Z alpha 1-antitrypsin protein (the protein associated with the liver disease of Z alpha 1-antitrypsin deficiency) expression on ER stress responses acted as potential disease modifiers with respect to each other.</p> <p>Conclusion</p> <p>Our novel observations suggest that both the ER overload response (EOR) and the unfolded protein response (UPR) are activated by mutant C282Y HFE protein.</p

    Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

    Get PDF
    Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others

    Management of osteoporosis in patients hospitalized for hip fractures

    Get PDF
    Hip fracture is associated with high morbidity, mortality, and economic burden worldwide. It is also a major risk factor for a subsequent fracture. A literature search on the management of osteoporosis in patients with hip fracture was performed on the Medline database. Only one clinical drug trial was conducted in patients with a recent hip fracture. Further studies that specifically address post-fracture management of hip fracture are needed. The efficacy of anti-osteoporosis medication in older individuals and those at high risk of fall is reviewed in this paper. Adequate nutrition is vital for bone health and to prevent falls, especially in malnourished patients. Protein, calcium, and vitamin D supplementation is associated with increased hip BMD and a reduction in falls. Fall prevention, exercise, and balance training incorporated in a comprehensive rehabilitation program are essential to improve functional disability and survival. Exclusion of secondary causes of osteoporosis and treatment of coexistent medical conditions are also vital. Such a multidisciplinary team approach to the management of hip fracture patients is associated with a better clinical outcome. Although hip fracture is the most serious of all fractures, osteoporosis management should be prioritized to prevent deterioration of health and occurrence of further fracture

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10βˆ’1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10βˆ’2 m/day at 150–400 m BGL to 10βˆ’3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields

    Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence

    Get PDF
    A major public health goal is to determine linkages between specific pollution sources and adverse health outcomes. This paper provides an integrative evaluation of the database examining effects of vehicular emissions, such as black carbon (BC), carbonaceous gasses, and ultrafine PM, on cardiovascular (CV) morbidity and mortality. Less than a decade ago, few epidemiological studies had examined effects of traffic emissions specifically on these health endpoints. In 2002, the first of many studies emerged finding significantly higher risks of CV morbidity and mortality for people living in close proximity to major roadways, vs. those living further away. Abundant epidemiological studies now link exposure to vehicular emissions, characterized in many different ways, with CV health endpoints such as cardiopulmonary and ischemic heart disease and circulatory-disease-associated mortality; incidence of coronary artery disease; acute myocardial infarction; survival after heart failure; emergency CV hospital admissions; and markers of atherosclerosis. We identify numerous in vitro, in vivo, and human panel studies elucidating mechanisms which could explain many of these cardiovascular morbidity and mortality associations. These include: oxidative stress, inflammation, lipoperoxidation and atherosclerosis, change in heart rate variability (HRV), arrhythmias, ST-segment depression, and changes in vascular function (such as brachial arterial caliber and blood pressure). Panel studies with accurate exposure information, examining effects of ambient components of vehicular emissions on susceptible human subjects, appear to confirm these mechanisms. Together, this body of evidence supports biological mechanisms which can explain the various CV epidemiological findings. Based upon these studies, the research base suggests that vehicular emissions are a major environmental cause of cardiovascular mortality and morbidity in the United States. As a means to reduce the public health consequences of such emissions, it may be desirable to promulgate a black carbon (BC) PM2.5 standard under the National Ambient Air Quality Standards, which would apply to both on and off-road diesels. Two specific critical research needs are identified. One is to continue research on health effects of vehicular emissions, gaseous as well as particulate. The second is to utilize identical or nearly identical research designs in studies using accurate exposure metrics to determine whether other major PM pollutant sources and types may also underlie the specific health effects found in this evaluation for vehicular emissions
    • …
    corecore