98 research outputs found

    GRBs Neutrinos as a Tool to Explore Quantum Gravity induced Lorentz Violation

    Full text link
    Lorentz Invariance Violation (LIV) arises in various quantum-gravity theories. As the typical energy for quantum gravity is the Planck mass, MplM_{pl}, LIV will, most likely, be manifested at very high energies that are not accessible on Earth in the foreseeable future. One has to turn to astronomical observations. Time of flight measurement from different astronomical sources set current limits on the energy scale of possible LIV to >0.01Mpl> 0.01 M_{pl} (for n=1 models) and >10−9Mpl> 10^{-9} M_{pl} (for n=2). According to current models Gamma-Ray Bursts (GRBs) are accompanied by bursts of high energy (\gsim 100TeV) neutrinos. At this energy range the background level of currently constructed neutrino detectors is so low that a detection of a single neutrino from the direction of a GRB months or even years after the burst would imply an association of the neutrino with the burst and will establish a measurement of a time of flight delay. Such time of flight measurements provide the best way to observe (or set limits) on LIV. Detection of a single GRB neutrino would open a new window on LIV and would improve current limits by many orders of magnitude

    Lorentz violation and Crab synchrotron emission: a new constraint far beyond the Planck scale

    Get PDF
    Special relativity asserts that physical phenomena appear the same for all inertially moving observers. This symmetry, called Lorentz symmetry, relates long wavelengths to short ones: if the symmetry is exact it implies that spacetime must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a Lorentz violating microscopic structure of spacetime, for example discreteness, non-commutativity, or extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100 MeV synchrotron radiation from the Crab nebula to improve the previous limits by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.Comment: 12 pages. Presentation shortened and revised for letter to Nature. New title "A strong astrophysical constraint on the violation of special relativity by quantum gravity". Maximum observed synchrotron frequency lowered, resulting in weakening the constraint from E_QG>4.5*10^27 GeV to E_QG>10^26 GeV. The role of the effective field theory assumptions underlying the analysis is highlighte

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Evidence of antineutrinos from distant reactors using pure water at SNO

    Get PDF
    The SNO+ Collaboration reports the first evidence of reactor antineutrinos in a Cherenkov detector. The nearest nuclear reactors are located 240 km away in Ontario, Canada. This analysis uses events with energies lower than in any previous analysis with a large water Cherenkov detector. Two analytical methods are used to distinguish reactor antineutrinos from background events in 190 days of data and yield consistent evidence for antineutrinos with a combined significance of 3.5σ

    Observing Exoplanets with the James Webb Space Telescope

    Get PDF
    The census of exoplanets has revealed an enormous variety of planets or- biting stars of all ages and spectral types: planets in orbits of less than a day to frigid worlds in orbits over 100 AU; planets with masses 10 times that of Jupiter to planets with masses less than that of Earth; searingly hot planets to temperate planets in the Habitable Zone. The challenge of the coming decade is to move from demography to physical characterization. The James Webb Space Telescope (JWST) is poised to open a revolutionary new phase in our understanding of exoplanets with transit spectroscopy of relatively short period planets and coronagraphic imaging of ones with wide separations from their host stars. This article discusses the wide variety of exoplanet opportunities enabled by JWSTs sensitivity and stability, its high angular resolution, and its suite of powerful instruments. These capabilities will advance our understanding of planet formation, brown dwarfs, and the atmospheres of young to mature planets

    Search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5×1029  y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6×1029  y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3×1028  y for nn, 2.6×1028  y for pn and 4.7×1028  y for pp, an improvement over existing limits by close to 3 orders of magnitude for the latter two

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated
    • …
    corecore