143 research outputs found
Morphogenetic processes in the development and evolution of the arteries of the pharyngeal arches: their relations to congenital cardiovascular malformations
Exogenous WNT5A and WNT11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphants
Mutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.Agência financiadora:
Fundação para a Ciência e a Tecnologia (FCT)
Comissão de Coordenação e Desenvolvimento Regional do Algarve (CCDR Algarve)
ALG-01-0145-FEDER-28044; DFG 568/17-2 Algarve Biomedical Center (ABC)
Municipio de Louléinfo:eu-repo/semantics/publishedVersio
The changing morphology of the ventricular walls of mouse and human with increasing gestation
Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling.
Development of the arterial roots and ventricular outflow tracts
\ua9 2023 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.The separation of the outflow tract of the developing heart into the systemic and pulmonary arterial channels remains controversial and poorly understood. The definitive outflow tracts have three components. The developing outflow tract, in contrast, has usually been described in two parts. When the tract has exclusively myocardial walls, such bipartite description is justified, with an obvious dogleg bend separating proximal and distal components. With the addition of non-myocardial walls distally, it becomes possible to recognise three parts. The middle part, which initially still has myocardial walls, contains within its lumen a pair of intercalated valvar swellings. The swellings interdigitate with the distal ends of major outflow cushions, formed by the remodelling of cardiac jelly, to form the primordiums of the arterial roots. The proximal parts of the major cushions, occupying the proximal part of the outflow tract, which also has myocardial walls, themselves fuse and muscularise. The myocardial shelf thus formed remodels to become the free-standing subpulmonary infundibulum. Details of all these processes are currently lacking. In this account, we describe the anatomical changes seen during the overall remodelling. Our interpretations are based on the interrogation of serially sectioned histological and high-resolution episcopic microscopy datasets prepared from developing human and mouse embryos, with some of the datasets processed and reconstructed to reveal the specific nature of the tissues contributing to the separation of the outflow channels. Our findings confirm that the tripartite postnatal arrangement can be correlated with the changes occurring during development
Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study
A Heart-Hand Syndrome Gene: Tfap2b Plays a Critical Role in the Development and Remodeling of Mouse Ductus Arteriosus and Limb Patterning
BACKGROUND: Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b(-/-) mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. CONCLUSIONS/SIGNIFICANCE: Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA
Genes encoding critical transcriptional activators for murine neural tube development and human spina bifida: a case-control study
<p>Abstract</p> <p>Background</p> <p>Spina bifida is a malformation of the neural tube and is the most common of neural tube defects (NTDs). The etiology of spina bifida is largely unknown, although it is thought to be multi-factorial, involving multiple interacting genes and environmental factors. Mutations in transcriptional co-activator genes-<it>Cited2</it>, <it>p300</it>, <it>Cbp</it>, <it>Tfap2α</it>, <it>Carm1 </it>and <it>Cart1 </it>result in NTDs in murine models, thus prompt us to investigate whether homologues of these genes are associated with NTDs in humans.</p> <p>Methods</p> <p>Data and biological samples from 297 spina bifida cases and 300 controls were derived from a population-based case-control study conducted in California. 37 SNPs within <it>CITED2</it>, <it>EP300</it>, <it>CREBBP</it>, <it>TFAP2A</it>, <it>CARM1 </it>and <it>ALX1 </it>were genotyped using an ABI SNPlex assay. Odds ratios and 95% confidence intervals were calculated for alleles, genotypes and haplotypes to evaluate the risk for spina bifida.</p> <p>Results</p> <p>Several SNPs showed increased or decreased risk, including <it>CITED2 </it>rs1131431 (OR = 5.32, 1.04~27.30), <it>EP300 </it>rs4820428 (OR = 1.30, 1.01~1.67), <it>EP300 </it>rs4820429 (OR = 0.50, 0.26~0.50, in whites, OR = 0.7, 0.49~0.99 in all subjects), <it>EP300 </it>rs17002284 (OR = 0.43, 0.22~0.84), <it>TFAP2A </it>rs3798691 (OR = 1.78, 1.13~2.87 in Hispanics), <it>CREBBP </it>rs129986 (OR = 0.27, 0.11~0.69), <it>CARM1 </it>rs17616105 (OR = 0.41, 0.22~0.72 in whites). In addition, one haplotype block in <it>EP300 </it>and one in <it>TFAP2A </it>appeared to be associated with increased risk.</p> <p>Conclusions</p> <p>Modest associations were observed in <it>CITED2</it>, <it>EP300</it>, <it>CREBBP</it>, <it>TFAP2A </it>and <it>CARM1 </it>but not <it>ALX1</it>. However, these modest associations were not statistically significant after correction for multiple comparisons. Searching for potential functional variants and rare causal mutations is warranted in these genes.</p
- …
