133 research outputs found

    Chromium and Nickel distribution in sediments of a coastal area impacted from metallurgical activities: the case of the Larymna Bay

    Get PDF
    In the present study, the distribution of Cr and Ni was investigated in the surface sediments from the Larymna Bay (Northern Evoikos Gulf) and in metallurgical slag samples discharged in the marine environment. The results were compared to concentrations of Cr and Ni in parent rocks that outcrop extensively in the catchment area of N. Evoikos in order to distinguish natural and anthropogenic sources of these two elements. Elevated concentrations of Cr and Ni as well as high values of magnetic susceptibility were determined in all samples. Low leachability was determined for Cr since chromite is the major crystalline phase of Cr in the samples analyzed whereas higher leachability was observed for Ni

    Sea bottom sediments of Elefsis Gulf: A potential secondary source of metals under simulated ocean acidification conditions

    Get PDF
    Hypoxic coastal areas are considered as high-priority systems for Ocean Acidification (OA) research, because the co-occurrence and interaction of low oxygen with other environmental stressors, such as elevated pCO2, warming and eutrophication, may put them at greater risk. In this work, an anoxic coastal phenomenon exhibiting relatively reduced pH at the near bottom water layer was studied. In-situ and microcosm experiment measurements, simulating OA conditions, were conducted in order to assess the fate of dissolved trace metals that could either sink towards the sediment or be released towards the water column. OA conditions seem to induce the release of Al, Ni, Cd, Fe, Mn and As from the sediment while, in combination with anoxia, a restriction in this dissolution mechanism was found. Cr, Zn and Pb seem to follow a sink type mechanism under more acidified conditions while, in addition to anoxia, a source type mechanism is revealed. Hg seems to follow a source type mechanism under OA in any case. Regarding Fe species, it becomes evident that Fe (II) is the dominant species, indicating an increased stability as a result of acidified conditions

    Dissolved organic matter cycling in eastern Mediterranean rivers experiencing multiple pressures. The case of the trans-boundary Evros River

    Get PDF
    The objective of our study was to provide a comprehensive evaluation on C, N, P cycling in medium sized Mediterranean rivers, such as the Evros, experiencing multiple pressures (intensive agriculture, industrial activities, population density). Our work aims also to contribute to the development of integrated management policies. Dissolved organic matter (DOM) cycling were investigated, during a one-year study. It was shown that the organic component of N and P was comparable to those of large Mediterranean rivers (Rhone, Po). In the lower parts of the river where all point and non-point inputs converge, the high inorganic N input favour elevated assimilation rates by phytoplankton and result in increased chl-a concentrations and autochthonous dissolved organic matter (DOM) production during the dry season with limited water flow. Moreover, carbohydrate distribution revealed that there is a constant background of soil derived mono-saccharides on top of which are superimposed impulses of poly-saccharides during blooms. During the dry season, inorganic nutrients and DOM are trapped in the lower parts of the river, whereas during high flow conditions DOM is flushed towards the sea and organic nitrogen forms can become an important TDN constituent (at least 40%) transported to shelf waters. The co-existence of terrigenous material with autochthonous and some anthropogenic is supported by the relatively low DOC:DON and DOC:DOP ratios, the positive correlation of DOC vs chl-a and the decoupling between DOC and DON. Overall, this study showed that in medium size Mediterranean rivers, such as the Evros, intensive agriculture and pollution sources in combination with water management practices and climatic variability are important factors determining C, N, P dynamics and export to coastal seas. Also, it highlights the importance of the organic fraction of N and P when considering management practices

    The potential impact of Saharan dust and polluted aerosols on microbial populations in the East Mediterranean Sea, an overview of a mesocosm experimental approach.

    Get PDF
    Recent estimates of nutrient budgets for the Eastern Mediterranean Sea (EMS) indicate that atmospheric aerosols play a significant role as suppliers of macro- and micro- nutrients to its Low Nutrient Low Chlorophyll water. Here we present the first mesocosm experimental study that examines the overall response of the oligotrophic EMS surface mixed layer (Cretan Sea, May 2012) to two different types of natural aerosol additions, “pure” Saharan dust (SD, 1.6 mg l-1) and mixed aerosols (A - polluted and desert origin, 1 mg l-1). We describe the rationale, the experimental set-up, the chemical characteristics of the ambient water and aerosols and the relative maximal biological impacts that resulted from the added aerosols. The two treatments, run in triplicates (3 m3 each), were compared to control-unamended runs. Leaching of approximately 2.1-2.8 and 2.2-3.7 nmol PO4 and 20-26 and 53-55 nmol NOx was measured per each milligram of SD and A, respectively, representing an addition of approximately 30% of the ambient phosphate concentrations. The nitrate/phosphate ratios added in the A treatment were twice than those added in the SD treatment. Both types of dry aerosols triggered a positive change (25-600% normalized per 1 mg l-1 addition) in most of the rate and state variables that were measured: bacterial abundance (BA), bacterial production (BP), Synechococcus (Syn) abundance, chlorophyll-a (chl-a), primary production (PP) and dinitrogen fixation (N2-fix), with relative changes among them following the sequence BP>PP≈N2-fix>chl-a≈BA≈Syn. Our results show that the ‘polluted’ aerosols triggered a relatively larger biological change compared to the SD amendments (per a similar amount of mass addition), especially regarding BP and PP. We speculate that despite the co-limitation of P and N in the EMS, the additional N released by the A treatment may have triggered the relatively larger response in most of the rate and state variables as compared to SD. An implication of our study is that a warmer atmosphere in the future may increase dust emissions and influence the intensity and length of the already well stratified water column in the EMS and hence the impact of the aerosols as a significant external source of new nutrients

    Guidance on Monitoring of Marine Litter in European Seas

    Get PDF
    This publication is a Reference Report by the Joint Research Centre of the European Commission.The MSFD Technical Subgroup on Marine Litter was tasked to deliver guidance so that European Member States could initiate programmes for monitoring of Descriptor 10 of the MSFD. The present document provides the recommendations and information needed to commence the monitoring required for marine litter, including methodological protocols and categories of items to be used for the assessment of litter on the Beach, Water Column, Seafloor and Biota, including a special section on Microparticles

    Trace metals in a tidal Mediterranean embayment

    No full text
    The Euvoikos gulf, and the strait of Euripos therein, is a restricted embayment on the eastern coast of Greece having a significant, unusual tidal phenomenon and receiving some domestic, trade and industrial wastes from the town of Chalkis and several coastal industries. The purpose of the present work was to study the influence of the tidal current and the anthropogenic inputs on the distributions of several trace elements (namely, Pb, Cu, Zn, Cr, Fe, Mn and Ni) in the seawaters (as dissolved and particulate species) and the sea-bottom sediments. Thorough mixing, resuspension and transport of fine particles and direct discharges are the major mechanisms affecting the distribution patterns. © 1983
    corecore