143 research outputs found

    Genetic Diagnostics in Routine Osteological Assessment of Adult Low Bone Mass Disorders

    Get PDF
    Context Many different inherited and acquired conditions can result in premature bone fragility / low bone mass disorders (LBMD). Objective We aimed at elucidating the impact of genetic testing on differential diagnosis of adult LBMD and at defining clinical criteria for predicting monogenic forms. Methods Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score 2), and a high normal BMI. In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD, e.g. in LRP5, were overrepresented. Conclusion The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield

    Comparative assessment of skin reactivity to thimerosal- or phenol-preserved Imunoleish® antigen in dogs with suspected American Tegumentary Leishmaniasis in an endemic area of the state of Rio de Janeiro, Brazil

    Get PDF
    The leishmanin skin test (LST), which is an in vivo test that assesses the cellular immune responses to Leishmania-derived antigens, is an important tool in the laboratory diagnosis of American tegumentary leishmaniasis (ATL). This study aimed to compare the results obtained in LST employing the Imunoleish® antigen preserved with thimerosal (AgT) or phenol (AgP) and serological techniques to detect a possible infection caused by Leishmania (Viannia) braziliensis in dogs. The study included 172 dogs from an area endemic for ATL in the municipality of Paracambi, state of Rio de Janeiro, Brazil. The results obtained with Imunoleish® antigen preserved with thimerosal (AgT) or phenol (AgP) and serological tests were compared. Each dog received, intradermally, 0.1 mL of each antigen on the inner side of the right (AgT) and left (AgP) thighs. Five (2.7%) dogs presented ATL lesions. Of these, two were reactive to both formulations and three were reactive only to AgT. Among the 172 dogs, 68 (39.5%) were reactive only to AgT, 16 (9.3%)  only to AgP, and 11 (6.4%) to both formulations. Twenty-one (12.2%) sera samples were reactive by immunofluorescent antibody test (IFAT) and 21 enzyme-linked immunosorbent assay (ELISA). However, in only two dogs out of the five which Leishmania was isolated from, serological tests were positive. The LST and serological tests could be a useful tool in the diagnosis of L. (V.) braziliensis infection in dogs. Standardization of the techniques and reagents used could allow comparative studies on sensitivity, specificity, and positive and negative predictive values in dogs from different regions.Keywords: American Tegumentary Leishmaniasis, Leishmanin skin test, Diagnosis, Dogs, Host

    Viability and Burden of Leishmania in Extralesional Sites during Human Dermal Leishmaniasis

    Get PDF
    Understanding of the dynamics and distribution of Leishmania in the human host is fundamental to the targeting of control measures and their evaluation. Amplification of parasite gene sequences in clinical samples from cutaneous leishmaniasis patients has provided evidence of Leishmania in blood, other tissues and sites distinct from the lesion and of persistence of infection after clinical resolution of disease. However, there is uncertainty about the interpretation of the presence of Leishmania DNA as indicative of viable parasites. Because RNA is short-lived and labile, its presence provides an indicator of viability. We amplified Leishmania 7SLRNA, a molecule involved in intracellular protein translocation, to establish viability and estimate parasite load in blood monocytes, tonsil swab samples, and tissue fluid from healthy skin of patients with dermal leishmaniasis. Results showed that during active dermal leishmaniasis, viable Leishmania are present in blood monocytes, tonsils and normal skin in quantities similar to that in lesions, demonstrating widespread dissemination of infection and subclinical involvement of tissues beyond the lesion site. Leishmania 7SLRNA will be useful in deciphering the role of human infection in transmission

    Short clones or long clones? A simulation study on the use of paired reads in metagenomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metagenomics is the study of environmental samples using sequencing. Rapid advances in sequencing technology are fueling a vast increase in the number and scope of metagenomics projects. Most metagenome sequencing projects so far have been based on Sanger or Roche-454 sequencing, as only these technologies provide long enough reads, while Illumina sequencing has not been considered suitable for metagenomic studies due to a short read length of only 35 bp. However, now that reads of length 75 bp can be sequenced in pairs, Illumina sequencing has become a viable option for metagenome studies.</p> <p>Results</p> <p>This paper addresses the problem of taxonomical analysis of paired reads. We describe a new feature of our metagenome analysis software MEGAN that allows one to process sequencing reads in pairs and makes assignments of such reads based on the combined bit scores of their matches to reference sequences. Using this new software in a simulation study, we investigate the use of Illumina paired-sequencing in taxonomical analysis and compare the performance of single reads, short clones and long clones. In addition, we also compare against simulated Roche-454 sequencing runs.</p> <p>Conclusion</p> <p>This work shows that paired reads perform better than single reads, as expected, but also, perhaps slightly less obviously, that long clones allow more specific assignments than short ones. A new version of the program MEGAN that explicitly takes paired reads into account is available from our website.</p

    A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease

    Get PDF
    The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to\ua0discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the\ua0top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
    corecore