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ARTICLE

A Whole-Genome Analysis Framework
for Effective Identification of Pathogenic
Regulatory Variants in Mendelian Disease

Damian Smedley,1,2,15 Max Schubach,3,15 Julius O.B. Jacobsen,4,15 Sebastian Köhler,3

Tomasz Zemojtel,3,5 Malte Spielmann,3,6 Marten Jäger,3,7 Harry Hochheiser,8 Nicole L. Washington,9

Julie A. McMurry,10 Melissa A. Haendel,10 Christopher J. Mungall,9 Suzanna E. Lewis,9 Tudor Groza,11,12

Giorgio Valentini,13 and Peter N. Robinson3,6,7,14,16,*

The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mende-

lian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework

that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific

Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method

and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance

to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as

the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian

disease.
Introduction

Medical genetics is being transformed by next-generation

sequencing (NGS) technologies that enable the simulta-

neous investigation of all relevant disease genes, all pro-

tein-coding genes, and even the entire genome.1,2

Whole-genome sequencing (WGS) can detect a broader

range of genetic variation than other sequencing ap-

proaches, including not only single-nucleotide variants

(SNVs) and insertion or deletions (indels), but also struc-

tural variants such as copy-number variants (CNVs) and

translocations. Pilot studies have shown that WGS can

reveal disease-causing variants missed by other genetic

tests.3 In addition to interrogating more of the non-coding

genome, WGS also has better coverage, even in exome re-

gions.3 Therefore, WGS is best poised to investigate the

relevance of nucleotide substitutions and other small

non-coding variants (NCVs) inMendelian disease, but sub-

stantial obstacles remain.

We hypothesize that the rarity of reported Mendelian

regulatory mutations is related to a long-standing observa-

tional bias toward coding sequences in human genetic

diagnostic and research projects. Genome-wide association

studies (GWASs) have identified more than 10,000 strong
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associations (p < 10�5) between diseases or traits and

SNVs, most of which are located in non-coding se-

quences;4 however, in Mendelian disease, mutations in

non-coding regions represent a tiny minority of all those

published to date. In fact, of the more than 100,000

Mendelian-disease-causing variants in ClinVar,5 the vast

majority affect coding sequences or conserved splice sites.

Accordingly, a large number of bioinformatics tools have

been developed to predict the pathogenicity of sequence

variants in these traditional categories.6 The ‘‘regulatory

code’’ that determines whether and how a given genetic

variant affects the function of a regulatory element re-

mains poorly understood for most classes of regulatory

variation. Thus, given our lack of understanding and tool-

ing, it is not surprising that so far very few disease-causing

NCVs less than 25 nucleotides have been identified as

causal in Mendelian disease. To address this, we therefore

sought to develop an effective approach to detect regulato-

ry variants causative of Mendelian disease.

Recently, several machine learning (ML) methods have

been developed to evaluate arbitrary genomic SNVs with

respect to their potential to cause disease or affect genetic

regulation.7–11 None of the methods were designed specif-

ically for the detection of NCVs associated with Mendelian
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disease. To address this, we introduce Genomiser, a com-

plete framework for the prioritization of NCVs and

discovery of SNVs causative of specific Mendelian diseases.

It has been designed primarily for use in two contexts: clin-

ical diagnosis and novel disease gene identification. Our

approach combines two major components: (1) a machine

learning method for scoring NCVs and (2) an integrative

algorithm for ranking NCVs in whole-genome sequence

data. The ML method scores each position of the non-

coding genome based on predicted pathogenicity in

Mendelian diseases. The integrative algorithm factors in

multiple inputs: (1) phenotypes, (2) variants in coding re-

gions, (3) variants in non-coding regions, and (4) existing

published gene-phenotype associations. We show by

cross-validation studies that the ML method outperforms

previous, more general-purpose, pathogenicity scoring

schemes in the particular task of identifying Mendelian

disease-associated variants. Simulations performed for

more than 10,000 case subjects were able to recover the

correct regulatory variant in first place in 77% of diagnostic

genomes.
Material and Methods

Observed Probably Non-deleterious Variant Sites
We identified single-nucleotide sites in the human genome at

which the human genome reference sequence differs from the in-

ferred ancestral primate genome based on the Ensembl Enredo-

Pecan-Ortheus (EPO) whole-genome alignments of six primate

species12,13 (Ensembl Compara release e71). A file containing the

inferred ancestral sequences was downloaded from the 1000

Genomes Project website. We selected all positions of high-

confidence alignments that differed from the human reference

sequence (hg19). Low-confidence calls are defined in the file as

those where the ancestral state is supported by one sequence

only. This file was compared with the human (Homo sapiens)

genome sequence (hg19) via an in-house Java program that cata-

loged the differences found according to location with respect to

genomic annotations.

We excluded nucleotide positions associated with variants pre-

sent in the most recent 1000 Genomes Project14 data at a fre-

quency of higher than 5% (meaning that the derived allele in

the human genome is present at a frequency of less than 95% so

that it is less certain that the allele has been exposed to many

generations of natural selection). The file ALL.wgs.phase3_

shapeit2_mvncall_integrated_v5a.20130502.sites.vcf was down-

loaded from the 1000 Genomes Project FTP site on May 30,

2015, and the AF (allele frequency) field was used as the threshold.

All variants were annotated with Jannovar15 v.0.14 using NCBI

Reference Sequence Database16 (annotation release 105) and

only variants of non-coding variant effect are used as final non-

deleterious variant sites (negative positions). Table S1 shows the

distribution of variants extracted in this way and the variant cate-

gories selected for analysis are marked. This yielded a total of

14,755,199 sites; because deleterious variants are depleted by nat-

ural selection in fixed or nearly fixed derived alleles, we infer that

variation in these sites is unlikely to be associated with Mendelian

disease, and we therefore chose to use this set of genomic sites as

negative examples for training.
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Biocuration of Non-coding Mendelian Disease-

Associated Mutations
Comprehensive literature review was performed to identify non-

coding variants that are convincingly associated with Mendelian

disease. We included only those variations and publications

judged to provide plausible evidence of pathogenicity. First, the

phenotypic abnormalities of the individual carrying the variant

were assessed and a variant was included only if the disease asso-

ciation was regarded as plausible on the basis of evidence such

as familial cosegregation or experimental validation, using tech-

niques such as luciferase reporter assays, electrophoretic mobility

assay, or telomerase activity assay. In some cases pathogenicity

was assigned based on curator judgment or computational

predictions; for instance, mutations in RNA genes that affected

RNA secondary structure elements such as stem loops were

included. To identify articles for biocuration, a number of review

articles were consulted on non-coding mutations,17–23 including

50 and 30 untranslated region (UTR) mutations,24–29 enhancer

mutations,30–32 promoter mutations,33,34 and mutations affecting

microRNA (miRNA) genes or miRNA recognition sites in

mRNAs.35–38 Additionally, locus-specific databases were consulted

for selected genes.39–41 We did not include variants that represent

susceptibility loci for common, complex disease (i.e., ‘‘GWAS hits’’

were excluded). Likewise, somatic variants associated with cancer

were not included. A total of 453 unique non-coding Mendelian

disease-associated variants were identified (Table S6). Mutations

were manually mapped to GRCh37, if necessary. Each variant

was cataloged according to its sequence variant type (Table 1).

The disease associated with the variant was mapped to an OMIM

disease identifier, and the affected gene was encoded with an

NCBI Entrez Gene identifier.
Genomic Attributes Used for Machine Learning
Every position in the genome was annotated with 26 numeric

features. Conservation scores PhastCons and PhyloP42 for 9

primates, 32 mammals, and 45 vertebrates multi-species align-

ments were derived from UCSC.43 GERPþþ element scores and

the corresponding p values were downloaded from the GERP44

website on June 6, 2015. CpG and G/C content as well as the

observed to expected CpG ratio were downloaded directly

from the UCSC table browser45 on June 6, 2015. The GC content

in the human genome (hg19) in a range of 575 nt for every

position was computed (Ns are not counted). Transcription

and regulation annotations were downloaded from UCSC.43

We used the maximum ENCODE H3K27 acetylation level along

with the maximum ENCODE H3K4 methylation level and the

maximum ENCODE H3K4 trimethylation level. DNase hyper-

sensitive scores were derived from the UCSC ENCODE Regula-

tion DNase Clusters track V3 along with the number of overlap-

ping transcription factor binding sites conserved in the human/

mouse/rat alignment. In addition, permissive and robust en-

hancers were taken from the FANTOM5 project.46 Population-

based features were computed by counting the number of rare

(%0.5% AF) and common (>0.5% AF) 1000 Genomes14 (release

5a of 05/02/2013) variants in a window of 5500 and using the

ratio of rare variants (%0.5%) and common variants (>0.5%)

(zero if common variants are zero). Finally, overlapping Data-

base of Genomic Variants47 (DGV), dbVar,48 and ISCA49 (study

IDs nstd37, nstd45, nstd75) CNVs for every position in the

human genome were counted for each position. All attributes

are listed in Table S2.
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Table 1. Mendelian Regulatory Mutations

Category Example Count

Enhancer triphalangeal thumb, type I (SHH [MIM: 174500]) 42

Promoter hemophilia B (F9 [MIM: 306900]) 142

50 UTR 153

Transcription (core promoter) acute intermittent porphyria (HMBS [MIM: 176000]) 52/153

uORF Marie Unna hereditary hypotrichosis (HR [MIM: 146550]) 37/153

Secondary structure hyperferritemia cataract syndrome (FTL [MIM: 600886]) 31/153

Kozak sequence beta thalassemia (HBB [MIM: 613985]) 2/153

Unclassified thrombocytopenia 2 (ANKRD26 [MIM: 188000]) 31/153

30 UTR 43

Polyadenylation permanent neonatal diabetes (INS [MIM: 606176]) 14/43

miRNA binding autosomal-dominant spastic paraplegia 31 (REEP1 [MIM: 610250]) 5/43

Other autosomal-dominant myopia 21 (ZNF644 [MIM: 614167]) 24/43

Large non-coding RNA gene microcephalic osteodysplastic primordial dwarfism, type 1 (RNU4ATAC [MIM: 210710]) 65

MicroRNA gene autosomal-dominant deafness 50 (MIR96 [MIM: 613074]) 5

Imprinting control region Beckwith-Wiedemann syndrome (H19 [MIM: 130650]) 3

Total 453

Total single-nucleotide variants 406

A total of 453 unique, non-coding, regulatory mutations were identified by manual biocuration (Table S6). The pathomechanism of a subset of the 50 and 30 UTR
mutations was indicated in the original publications and is shown here. 406 of the 453 mutations were single-nucleotide variants that were used for machine
learning. One example of a disease caused by each pathomechanistic category is shown together with the affected gene and the OMIM number of the disease.
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Regulatory Mendelian Mutation Score
The regulatory Mendelian mutation (ReMM) framework uses ML

techniques to train a classifier to predict the potential of an arbi-

trary position in the non-coding genome to cause aMendelian dis-

ease if mutated. The hand-curated set of Mendelianmutations was

used as a positive training set, and non-coding nucleotides that

have diverged in humans as compared with the inferred ancestral

primate genome sequence were used as a negative training set.

Our experimental setting is characterized by a high imbalance

between the available positive and negative training data: there

were only 453 regulatory Mendelian mutations, of which 406

were single-nucleotide variants suitable for training, compared

with 14,755,199 negative examples. Thus, approximately 36,000

negative examples are available for every positive one. In such

extremely unbalanced conditions, classical computational and

machine learningmethods tend to perform poorly. This is because

they learn overwhelmingly from negative examples, which leads

to a sensitivity and precision close to zero on new (test) data.50

In order to train the ReMM model, we first divided the majority

class (probably non-deleterious variant sites) randomly into n ¼
100 partitions and then we added all the minority instances

(non-coding Mendelian mutations) to every partition. We chose

100 partitions because no substantial performance improvements

were observed when more partitions were utilized (data not

shown). Moreover, in each partition we synthetically oversampled

theminority positive class, using the synthetic minority over-sam-

pling technique51 (SMOTE) with a number of nearest neighbors

k¼ 5.With the SMOTE approachwe generated synthetic instances

two times the cardinality of the positive class. We then randomly

undersampled the majority negative class to obtain a three times
The Am
larger set of negative examples. The resulting dataset was used to

train a random forest (RF) classifier52 (forest size 10; larger forests

do not significantly improve the performances; data not shown)

that outputs a probability to estimate whether a given position

in non-coding genome can cause a Mendelian disease if mutated.

The overall process of over- and undersampling and the training of

the RF was repeated for all the n partitions. Finally, the probabili-

ties estimated by each RF were averaged and the resulting

‘‘consensus’’ probability of the hyperensemble represents the final

ReMM score. Our method was implemented in Java usingWeka.53

One ReMM score was generated for each position of the non-

coding genome, with 0.0 being the least and 1.0 being the highest

prediction of deleteriousness. In order to predict the pathogenicity

of deletions, themaximumReMM score of any nucleotide affected

by the deletion is used (note that our tests include deletions of up

to 24 nt only). For insertions, the maximum ReMM score of the

two nucleotides that surround the insertion are used.
Model Testing and Validation
Model performance was tested with a ‘‘cytogenetic band-aware’’

10-fold cross validation: to ensure that mutations of the same loca-

tion, gene, or disease do not occur in the training and test set, we

partitioned the mutations into the chromosomal bands. Bands

with at least one positive mutation were assigned to one of the

ten folds so that each fold contains around 40 positives. The re-

maining bands were randomly assigned to the different folds

and negative variants were added to the partition of their

associated band. For each round of the cross-validation, the nine

folds corresponding to the training set underwent a subdivision
erican Journal of Human Genetics 99, 1–12, September 1, 2016 3
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in n ¼ 100 partitions and were over- and undersampled according

to the procedures described above in the model training section.

The trained ensemble was then tested on the remaining held-out

unchanged fold not used for training. In this way, across the ten

rounds of the cross-validation procedure, we tested all the

genomic positions available in our data (more than 14,000,000

genomic positions). For all other positions in the human genome,

we built a global model using the complete negative and positive

positions and annotated the remaining 2,845,135,389 unambigu-

ous (i.e., not ‘‘N’’) positions of the human reference genome

(release hg19).

The ReMM score was compared to the non-coding variant scores

CADD7 v.1.3, GWAVA8 v.1.0, FATHMM-MKL,54 Eigen,11 andDeep-

SEA.10 CADD and Eigen scores are extracted from the provided

precomputed genome-wide file. For Eigen all variants on allo-

somes were removed, because Eigen is available only on auto-

somes. Position scores of GWAVA, FATHMM-MKL (commit

d4af576240fb872179805fb113e892597248441d), and DeepSEA

were computed using the source code provided by the authors.
Regulatory Filtering and Genomiser Application
Genomiser was implemented by extending the existing Exomiser

codebase.55,56 To allow Genomiser to run in a reasonable time

frame (~4–10 min) and with a minimal memory (~4–10 GB), we

had to reimplement Exomiser to be able to stream variants from

a VCF file and run the various filtering and prioritization steps

in a user-configured manner rather than the predefined filtering

followed by prioritization steps of Exomiser. We also introduced

the ability to filter genes by their phenotypic similarity so that

as a first step genes associated with diseases that have little or no

similarity to the observed phenotypes can be removed along

with their associated variants. Note in this step, distal (>20 kb

from a gene) variants that reside in predicted enhancers from

the FANTOM5 consortium46 (downloaded on 8/7/15) or Ensembl

regulatory feature build57 (downloaded Ensembl regulatory fea-

tures dataset from Ensembl Biomart on 8/7/2015) are associated

with the most phenotypically similar gene in the topologically

associated domain (TAD)58 containing the enhancer. TADs are

defined using Hi-C to identify higher-order chromatin interac-

tions in the three-dimension organization of the genomes and

they organize the genome into chromosome neighborhoods

within which most enhancer-promoter contact occurs. We re-

placed the existing behavior of removing all non-coding variants

with a new configurable filter that can remove any combination

of variant types or none at all in the case of Genomiser. Pathoge-

nicity scoring was extended to use the REMM scores for all

non-coding variants. In the case of non-coding insertions, the

maximumof the REMM score for the two bases either side of inser-

tion site is used. For non-coding deletions, the highest REMM

score for the deleted positions is taken. Finally, we introduced a

regulatory feature filter where all variants that lie more than

20 kb from a gene are removed unless they lie in one of the

predicted enhancers. The binaries and data for Genomiser are

available as part of Exomiser and are free for academic use from

Exomiser website. The version used in all results presented here

is 7.2.0. The Genomiser_README file describes how to download,

install, and run the application to perform Genomiser analysis.
Performance Evaluation
Benchmarking experiments for Genomiser were performed using

10,419 simulated rare disease genomes based on the 453 regula-
4 The American Journal of Human Genetics 99, 1–12, September 1, 2
tory Mendelian mutations and 1,092 whole-genomes VCF files

from the 1000 Genomes Project14 (05/02/2013 release). For auto-

somal-dominant diseases, one heterozygous mutation was added,

and for autosomal-recessive diseases, either one homozygous mu-

tation or two heterozygous mutations were added to the 1000 Ge-

nomes VCF file. For these experiments, the phenotypic (HPO) an-

notations for the corresponding disease in OMIMwere taken on 8/

7/2015 from the annotation files of the HPO team. To measure the

ability of Genomiser to detect known disease-gene associations,

we repeated the analysis with incomplete (maximum of three

HPO annotations), noisy (two random HPO terms added), and

imprecise (two of the original HPO annotations replaced by the

more general parent terms in the ontology) annotations.

These simulated genomes were run through the default settings

of Genomiser. In the first step, genes and associated variants are

removed where there is little similarity between observed pheno-

types and direct or inferred knowledge from disease and model or-

ganism databases. Note in this step, distal (>20 kb from a gene)

variants that reside in predicted enhancers from FANTOM5 and

Ensembl are associated with the most phenotypically similar

gene in the topological domain containing the enhancer rather

than simply taking the closest gene. Distal variants that do not

reside in a predicted enhancer are removed, followed by the exclu-

sion of any that are common (>1%minor allele frequency [MAF])

in the 1000 Genomes Project, NHLBI Exome Sequencing Project

(ESP), and Exome Aggregation Consortium (ExAC) datasets.

Finally, the remaining variants are prioritized by a composite score

of the minor allele frequency, phenotypic similarity, and pathoge-

nicity (using the ReMM score for non-coding and the existing

hiPHIVE method for coding and splice sequences). To assess our

performance, we measured how often the seeded regulatory Men-

delian variant was ranked first among the full set of the variants of

the simulated Mendelian disease genomes.
Results

In this work, we developed a complete framework for the

prioritization of non-coding variants in Mendelian disease

by combining a bespoke pathogenicity score with pheno-

type-based measures of gene candidacy. We first developed

a pathogenicity score to assess Mendelian non-coding vari-

ation. Next we developed methods to integrate the patho-

genicity score, candidate regulatory regions, and the

phenotypic relevance of the associated genes. Here we

describe the development process and present bench-

marking of the entire framework.

The Regulatory Mendelian Mutation Score

We reasoned that ML techniques for building a scoring

model of non-coding Mendelian variants would perform

better with a highly reliable training set, consisting of

mutations that had been validated by experimentation or

co-segregation studies, or for which other convincing evi-

dence of pathogenicity was available. However, to date

such a catalog of validated non-coding variants associated

with Mendelian disease has not existed. Therefore, we per-

formed detailed and comprehensive biocuration to iden-

tify experimentally or otherwise validated non-coding var-

iants (<25 nucleotides) associated with Mendelian disease
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A B Figure 1. Genomic Attributes of Regula-
tory Mendelian Mutations
(A) Centered mean and scaled genomic
attributes of Mendelian non-coding muta-
tions as compared with the derived non-
deleterious positions. Five highly informa-
tive attributes of different attribute groups
are shown. The information content of sin-
gle attributes was computed with a univari-
ate logistic regression model (Table S3).
(B) Principal-component analysis plot
showing the first two principle compo-
nents, which make up 32% of the total
variability.
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from the medical literature. The resulting 453 mutations

were located in 50 and 30 UTRs, promoters, enhancers, large

RNA genes, microRNA genes, and imprinting control re-

gions (ICR) (Table 1, Table S6).

To assess whether the regulatory Mendelian mutations

differ from non-deleterious variants, we compared the reg-

ulatory mutations based upon a set of genomic character-

istics (attributes) representing typical indicators of variant

functionality such as GC-content, conservation, histone

modifications, DNase I accessibility, and overlap with en-

hancers and transcription factor binding sites. Addition-

ally, Mendelian candidacy measures were incorporated,

such as the ratio of rare to common variation around the

position (Table S2). Information content of attributes asso-

ciated with each variant is computed using an univariate

logistic regression model,59 and results are shown in Table

S3. The negative variant set is derived from positions that

differ from the inferred primate ancestral genome with

an allele frequency > 95% (Table S1). The Mendelian regu-

latory mutations displayed a number of substantial differ-

ences as compared to the neutral variants (Figure 1A). Prin-

cipal-component analysis (PCA) was performed on the two

variant classes with all 26 features. The first two compo-

nents show a certain separation between our Mendelian

regulatorymutations and the negative variants (Figure 1B).

This analysis suggested that the genomic attributes

characterizing the nucleotide positions affected by the

Mendelian regulatory mutations differ sufficiently from

those of non-deleterious variants and could therefore be

used to construct a classifier using machine learning tech-

niques. Our experimental setting is characterized by an

extreme imbalance between the available positive and

negative data (406 Mendelian disease-associated SNVs

and 14,755,199 negative data points). As detailed in the

Material and Methods section, we developed a hyper-

ensemble (ensemble of ensembles) approach in which

multiple RFs52 are used as base learners, together with a

combination of over- and undersampling techniques to

compensate for the unbalanced sizes of positive and nega-

tive training data. In total, an ensemble of 100 RFs are

trained in this way to promote balanced and comprehen-
The Am
sive coverage of the training data. The probabilities of

the 100 RFs are then averaged to compute the Regulatory

Mendelian Mutation (ReMM) score (Figure 2A).

We tested the performance of the ReMM score using a

10-fold ‘‘cytogenetic band-aware’’ cross-validation scheme.

This scheme was designed to minimize bias due to distinct

variants associated with the same disease gene being used

for both training and testing. Cytogenetic bands contain-

ing at least one disease-associated variant were thereby as-

signed to one of ten folds for cross validation, with each

fold containing a total of approximately 40 disease-associ-

ated variants. The remaining bands covering the rest of the

genome were randomly assigned to one of the folds.

Because our ML involves assessing individual genomic

positions, our training set excluded the 47 indels and dinu-

cleotide block mutations. However, in the subsequent

analysis of phenotype-driven prioritization (see below)

and software implementation, we did include deletions

as well as insertions. We evaluated the area under the

receiver operating characteristics (ROC) curve and the

area under the precision-recall (PR) curve to compare our

ReMM score against five other leading scoring methods:

CADD,7 GWAVA,8 FATHMM,54 DeepSEA,10 and Eigen11

(Figures 2B and 2C). PR and ROC curves show that in the

context of the prioritization of the Mendelian mutations,

the ReMM score substantially outperforms other state-of-

the-art scoring methods. It is worth noting that in the

context of extremely unbalanced data, the area under the

PR curve is more informative than the area under the

ROC,60 but even the small differences between the ROC

curves are in most cases statistically significant according

to the Delong test for the comparison of the areas under

dependent ROC curves (Table S4, Supplemental Note, Fig-

ures S1, S2, and S3).

Phenotype-Driven Prioritization of Non-coding

Variants

We and others have previously shown that phenotypic

information can effectively boost the prioritization of

disease-associated genes.1,61,62 Regulatory mutations can

lead to identical or similar phenotypic abnormalities as
erican Journal of Human Genetics 99, 1–12, September 1, 2016 5
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Figure 2. Regulatory Mendelian Mutation-Deleteriousness Score
(A) Summary of the algorithm for deriving the ReMM score.
(B and C) Performance comparison between ReMM and other state-of-the-art genome-wide deleteriousness score.
(B) Receiver operating characteristic curves.
(C) Precision-recall curves.
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disruptions of coding sequences in the same gene.30 We

therefore developed a framework, Genomiser, that com-

bines phenotypic, regulatory, and genotypic information

for the prioritization of non-coding variants associated

with a specific Mendelian disease. Genomiser integrates

our existing hiPHIVE algorithm55,56,63 to exploit pheno-

typic information from human and model organisms,

with the ReMM score to exploit genotypic information,

and relevant distal regulatory sequences into the prioritiza-

tion process. Genomiser is available as an extension to our

existing, freely downloadable Exomiser19 software suite.

The input consists of either a single-sample variant call

format (VCF) or multi-sample VCF with associated pedi-

gree (PED) file, representing the variations in either an

entire human genome or portions thereof. For example,

instead of whole genomes, one could use clinical exome

data containing at least some part of the regulatory

genome such as UTR or proximal promoter sequences.

Additionally, the software requires at least one Human
6 The American Journal of Human Genetics 99, 1–12, September 1, 2
Phenotype Ontology64 (HPO) term that describes the clin-

ical abnormalities of the individual being investigated.

As shown in Figure 3, Genomiser first of all identifies and

scores the genes that have the most similar phenotypes to

the phenotypic profile under investigation represented us-

ing the HPO terms. This scoring makes use of the hiPHIVE

algorithm to calculate phenotypic similarity based on

either existing phenotypic knowledge from human disease

(OMIM, Orphanet), mouse (MGI, IMPC), and zebrafish

(ZFIN) sources or using guilt-by-association based on prox-

imity in the STRING-DB protein-protein association

network to assign similarity where no phenotypes exist

for a gene. Variants associated with the most phenotypi-

cally similar genes are then retained if they either (1) lie

within a gene including all promoter, UTR, and intronic re-

gions, (2) are within 25 kb up- or down-stream of a gene, or

(3) within predicted regulatory features from FANTOM546

or the Ensembl regulatory build.57 Candidate variants are

assigned to the most phenotypically similar gene within
016



Figure 3. The Genomiser Analysis
Framework
Genomiser takes as input a whole-genome
variant call format (VCF) file, a list of
human phenotype ontology (HPO) terms
representing the clinical signs and symp-
toms observed in the individual being
investigated by WGS, and optional user
parameters that control the filtering and
prioritization steps. See text for details of
the prioritization procedure.
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the chromosomal topological domain,31 rather than

simply taking the closest gene. We have previously shown

that an assessment of regulatory boundaries formed by

topological domains can improve the identification of

candidate pathogenic copy-number variants.65

After this, any common variants (>1% MAF by default)

are removed and, optionally, the known/suspected inher-

itance model used to remove any variants that don’t fit

the expected pattern. The remaining coding or regulatory

variants are then scored according to the allele frequency

and predicted deleteriousness (using the ReMM score for

non-coding and the existing hiPHIVE method for coding

and splice sequences). A composite score based on the

phenotypic similarity of the gene to the observed pheno-

typic profile and the best scoring variant in that gene (or

mean of the best two under a compound heterozygous

model) is then used to rank the genes and their associated

variants.

Genomiser was evaluated by analyzing its capability to

recover a known regulatory Mendelian mutation among

the about 4 million variants included in simulated disease

genomes. To do so, we randomly added one of the regula-

tory Mendelian mutations to a randomly chosen, unaf-

fected whole-genome sequence from the 1000 Genomes

Project14 and ran the resulting genome file through Ge-

nomiser using the default parameters and known inheri-

tance model. We checked whether Genomiser was able to

prioritize the spiked-in regulatory variant as the top candi-

date. We repeated this prioritization experiment on 10,419

simulated disease genomes. We tested Genomiser in three

different experimental conditions, with either (1) no

phenotype information, (2) the full phenotypic profile of

the disease associated with the regulatory variant taken

from our public dataset of HPO disease annotations, or
The American Journal of Huma
(3) a more realistic clinical phenotype

profile. For the latter more realistic

clinical scenario, we (1) simulated

incomplete phenotyping by randomly

limiting the profile to three HPO

terms, (2) simulated imprecise pheno-

typing by changing two of these terms

to less specific parental term, and (3)

simulated atypical/confounding pre-

sentation by adding a further two

random HPO terms from the whole
of HPO.1 The recently published Phen-Gen tool61 also

has the capacity to process HPO-encoded phenotypic in-

formation and whole-genome data, so we additionally

compared our performance against this using the same

genomic and phenotypic profiles and identical allele fre-

quency and inheritance model filtering.

Genomiser was able to prioritize the causative, regulato-

ry variant as the top-scoring candidate in 77% of the ge-

nomes when using the full phenotypic profile (Figure 4).

There is a slight reduction in performance to 68%when us-

ing the restricted phenotypic profile that is more likely to

represent the type of phenotype annotations collected in

realistic clinical settings. In both scenarios, our results

represent a substantial improvement over Phen-Gen,

which achieved performances of 19% and 14% using the

full or restricted phenotypes, respectively. Performance

did vary by variant category; the 50 UTR, RNA gene, and

microRNA gene mutations were the easiest to prioritize

and the 30 UTR mutations were particularly difficult.

When phenotype data were not used by Genomiser, the

performance dropped substantially to 23%. Genomiser of-

fers a flexible framework where other non-coding deleteri-

ousness prediction methods such as CADD can be used

instead of using our ReMM score. With CADD, the perfor-

mance was 71% and 61% when using the full or restricted

phenotypic profiles, respectively, and without phenotype

data the causative variant was not seen as the top scoring

hit in any samples.

We note that the ReMM scores used in the Genomiser

experiment were computed by 10-fold cross validation:

the scores for the mutations included in each fold were ob-

tained through amodel trained onmutations not included

in that fold, but only on those of the remaining nine. In

other words, the ReMM score used in Genomiser for a
n Genetics 99, 1–12, September 1, 2016 7



Figure 4. Performance Evaluation of Genomiser
The curated Mendelian regulatory mutations were added one at a
time to unaffected genomes from the 1000 Genomes Project to
generate 10,419 simulated disease genomes (see Material and
Methods). As an additional test, the same simulations were per-
formed using the CADD score instead of the ReMM score. The ge-
nomes were also run under the same frequency, inheritance, and
phenotype conditions through Phen-Gen. Bars show percentage
of genomes in which the true variant was prioritized as the top
hit when assessing all the genomes or the subcategories involving
promoter, UTR, enhancer, RNA gene, microRNA gene (miRNA),
and imprinting control region (ICR) variants.
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specific mutation was obtained by a model not trained on

this variant.

Finally, although our focus in this manuscript is on

methods to prioritize non-coding Mendelian mutations,

we note that the Genomiser software application also

makes use of our previously published methods for coding

variants.56,66 To assess the performance of Genomiser on

22 published cases of compound heterozygosity in which

one causal mutation is regulatory and the other is coding

or splice site (Table S5), we spiked both mutations into a

genome VCF file and ran our analysis as above. The causa-

tive gene was ranked top in 18 (84%) of samples, demon-

strating the ability of Genomiser to integrate information

about coding and non-coding variants into the prioritiza-

tion process.
Discussion

In this work we have presented a complete framework, Ge-

nomiser, for the prioritization of non-coding variants in

Mendelian disease that offers a quick and effective means

to identify such variants from whole-genome sequences.

The final framework combines ReMMwith other measures

of variant candidacy, predicted regulatory regions, and a

measure of a regulated gene’s candidacy based on similar-

ity of the phenotypic profile observed in an individual un-

der investigation by WGS to existing knowledge, making

use of the integrated cross-species genotype-phenotype

knowledge base developed by the Monarch Initiative.67
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In 77% of samples, Genomiser is able to identify the caus-

ative regulatory Mendelian mutation as the top candidate

out of the 4 million plus variants in a whole genome. This

approach has the potential to substantially accelerate the

detection of pathogenic, non-coding Mendelian variants

by NGS and to explore the role of this currently under-

studied category of mutations. Although our focus here is

on regulatory variants, Genomiser can still identify causa-

tive coding variants with high accuracy as in the original

Exomiser application.

In order to computationally predict the consequences of

NCVs in the human genome, two types of training data are

required: disease associated (positive) and disease unassoci-

ated (negative). Previous methods have been designed to

detect functional NCVs in general rather than solely those

NCVs that cause Mendelian disease;7–9,68 the latter set is

difficult to find due to the fact that available databases

contain errors69 and conflateMendelian and GWAS-associ-

ated variants. Therefore, for this work, we performed

extensive and detailed literature curation to identify muta-

tions that are associated with Mendelian disease and

whose pathogenicity was judged to be plausible based on

cosegregation, experimental evidence, or similar consider-

ations. Our analysis of this collection of such mutations

showed that they do in fact differ substantially from back-

ground positions in the genome (Figure 1).

This collection allowed us to train a ML classifier using

only Mendelian disease-associated mutations. The meth-

odologies used by CADD, FATHMM-MKL, GWAVA, Deep-

SEA, and EIGEN were designed for substantially larger pos-

itive sets and hence we developed our own ML strategy to

overcome the challenges posed by our unique use case and

make no claim as to the superiority of our method across

all scenarios. However, for the prioritization of Mendelian

mutations in whole-genome sequencing data, the ReMM

score performed much better, as shown in Figure 2 and

in the detailed results provided in the Supplemental Note

and Figures S1–S3. The synergy of different factors explains

the success of ReMM in scoring regulatory Mendelian mu-

tations. At first, ReMM has been designed to deal with

highly imbalanced data (we have a ratio of about

1:36,000 between positive and negative examples) and is

a supervised machine learning algorithm that is designed

to be used when reliable training data is available, such

as our manually curated dataset of non-coding Mendelian

mutations. Second, the oversampling of synthetic positive

examples with SMOTE and the undersampling of negative

examples are key factors to balance training set data and to

avoid biased predictions toward the majority class (nega-

tive variants).50 Third, the adoption of a hyperensemble

strategy allows reliable base learners to be used (each base

learner is a random forest) and also allowed most of the

available search space to be covered, while maintaining a

good balancing between positive and negative examples.

Finally, taking the average of the scores computed by the

hyperensemble of RFs can reduce the variance component

of the error.52
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Importantly, none of the competing methods was avail-

able within a start-to-finish application for phenome-

driven WGS analysis such as the Genomiser. The modular

software architecture of Genomiser allows different scoring

methods to prioritize pathogenic variants to be used. By us-

ing CADD instead of ReMM on the same test data, we were

able to rank 71% percent of the pathogenic variants in first

place (versus 77% of top-ranked variants when ReMM is

used; Figure 4). Future work will be needed to determine

whether the ReMM score, or future versions of the ReMM

score or one of the competing scores, will be useful for

the full spectrum of non-coding Mendelian variation,

which could conceivably differ in many ways from the

small set of currently known noncoding Mendelian

variants.

Whichever scoring methodology is used, variant anal-

ysis alone is unlikely to be useful to identify Mendelian dis-

ease-associated variants in WGS data, which typically

contain more than 4 million variants, approximately

40,000 of which are locating in protein coding sequences.

We benchmarked the recall of our regulatory Mendelian

mutations when Genomiser was not used and just the

variant scores alone were used to prioritize the 10,419

simulated whole genomes used in our main experiment.

Using only simple filtering to remove any common vari-

ants with a MAF greater than 1%, prioritization by CADD

or ReMM scores alone was not able to identify the causa-

tive variant as the top hit in any of the samples. Even look-

ing at the top 10 or 100 variants, the causative variant was

seen in only 0.2% and 4% of samples by CADD, and 7%

and 18% by ReMM. This is not surprising because neither

CADD nor ReMM use phenotypic information; rather,

they are designed to assess the potential deleteriousness/

pathogenicity of genetic variants irrespective of a specific

Mendelian disease. Here, we use our phenotype-driven

approach for prioritizing disease genes that we have

developed for and previously applied for CNVs, clinical

exome analysis, and whole-exome analysis.1,66,70 We

then examine regulatory sequences assigned to the genes

that have been prioritized in this way and rank the associ-

ated regulatory variants based on a combination of their

ReMM score, allele frequency, and the similarity of the

observed phenotypic features and existing knowledge of

the gene (Figure 3). We show that our performance is

approximately four times as good as the only previous al-

gorithm able to prioritize WGS data for Mendelian disease

(Phen-Gen61), being able to detect the causative, non-cod-

ing variant as the top candidate in 68%–77% of cases de-

pending on whether a full or more realistic, restricted

phenotypic profile is used (Figure 4). In contrast, Phen-

Gen was able to identify the causative variant as the top

hit in only 14%–19% of samples, depending on whether

the full or restricted phenotypic profile was used. Even

looking at the top 100 variants returned by Phen-Gen,

the causative one was identified in only 31%–34% of sam-

ples. Phen-Gen uses its own model for predicted non-cod-

ing pathogenicity and is trained on positive sets of HGMD
The Am
regulatory variants and GWAS hits and a neutral set of

common (>30% allele frequency) variants using evolu-

tionary conservation, function signals from ENCODE,

and proximity to coding regions as properties. The issues

discussed above with these positive sets not fully represent-

ing true disease-causing variants probably accounts for

some of the reduced performance. Given the effort

required in pursuing candidate variants to establish causal-

ity, especially for regulatory variants, computational prior-

itization routines need to regularly place the true causal

variant near the top of the list to be effective. We would

therefore argue that Genomiser offers an effective solution

for identifying causative, non-coding Mendelian variants.

The inclusion of phenotype data is critical for the effec-

tive prioritization of the regulatory variants, with perfor-

mance dropping from 68%–77% to 23% when Genomiser

is run without any input HPO IDs with a consequent

removal of filtering and prioritization by phenotypic simi-

larity score but retention of frequency and regulatory

feature filtering and prioritization by ReMM score and

allele rarity. Although collecting a full and detailed pheno-

typic profile of the individual being investigated by WGS

will certainly improve the chance of prioritizing the cor-

rect causative variant,71 the semantic algorithms underly-

ing Genomiser are robust in that they allow for partial

and non-exact matching between the observed pheno-

types and previous disease and model organism pheno-

typic features associated with the gene. Genomiser offers

the prospect of discovering novel disease-gene association

through the inclusion of model organism data that

extends the phenotypic coverage across the human

proteome, along with the guilt-by-association approach

covering any remaining genes without phenotype data.

Throughout our analysis, coding and non-coding variants

were simultaneously assessed and Genomiser can effec-

tively identify both, as shown by the 84% performance

for identifying compound heterozygous variants involving

a coding and non-coding variant in the disease-associated

gene. Genomiser can be freely downloaded as part of the

Exomiser suite55,66 and will process a whole genome in

around 10 min on a standard desktop computer.

WhereGenomiser failed toprioritizeoneof the regulatory

Mendelian mutations as the top candidate, this was for a

number of reasons. 8%of theMendelian regulatory variants

were lost during the filtering steps, with half lost because

they are distal to a gene but do not yet fall into a predicted

enhancer. In the remaining 16% of cases, the causative

variant is detected but not as the top scoring candidate

due to allele frequencies approaching 1% and/or a low

ReMM score. Finally we note that although Genomiser per-

forms well in the analysis of genomes simulated to contain

non-coding Mendelian mutations, it is currently unclear

how common non-coding Mendelian mutations are and

thus how much of a performance boost can be expected

by approaches such as the one presented here.

Initiatives such as the UK 100,000 Genomes project,

the Precision Medicine Initiative, and many others are
erican Journal of Human Genetics 99, 1–12, September 1, 2016 9



Please cite this article in press as: Smedley et al., AWhole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory
Variants in Mendelian Disease, The American Journal of Human Genetics (2016), http://dx.doi.org/10.1016/j.ajhg.2016.07.005
poised to make genomic medicine part of health care for

individuals with rare and common disease. However, to

date, a tiny minority of published mutations in Mende-

lian disease have been found in non-coding sequences.

A major but currently unanswerable question is whether

this class of mutations (which comprise at least ten major

pathomechanistic categories; Table 1) are more common

than currently appreciated but simply have not been de-

tected because of the historical focus on protein-coding

exons and the fact that they were rarely sought in the

Sanger sequencing era, and indeed still within most bio-

informatics analysis of NGS data. Non-coding sequences,

such as enhancer elements, have been poorly investi-

gated30 and the challenge of understanding how to

interpret non-coding variants in diagnostic settings or

in projects dedicated to the characterization of novel dis-

ease-associated genes is only beginning to be tackled. The

answer to this question is pressing, because only about

25%–40% of individuals with suspected Mendelian dis-

ease who are investigated in large-scale whole-exome

screening programs actually receive a diagnosis.72–75

Although non-coding mutations not detected by whole-

exome analysis are unlikely to be the only cause for the

lack of a diagnosis in these individuals, WGS puts us

for the first time in the position to test this hypothesis.

In this work, we have presented effective algorithmic ap-

proaches designed especially to address this question,

and we provide an application called the Genomiser

that can be used on mid-range consumer hardware to

analyze VCF files derived from WGS. We have focused

in this report on small (<25 nt) non-coding mutations

for many classes of mutation. A similar approach could

be applied to the analysis of deep intronic splicing muta-

tion and to ‘‘silent’’ changes in coding sequences that

lead to misregulation. It is also likely that as more data

on non-coding Mendelian mutations becomes available,

it will be possible to improve the performance of ML ap-

proaches further and to develop bespoke classifiers for

specific categories of mutation.
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1000 Genomes, http://www.1000genomes.org

CADD, http://cadd.gs.washington.edu/

DeepSEA, http://deepsea.princeton.edu/media/code/deepsea_train_

bundle.v0.9.tar.gz

ExAC Browser, http://exac.broadinstitute.org/

FANTOM5 consortium, http://enhancer.binf.ku.dk/presets/

permissive_enhancers.bed

FATHMM-MKL, https://github.com/HAShihab/fathmm-MKL

Genomiser download, ftp://ftp.sanger.ac.uk/pub/resources/

software/exomiser/downloads/exomiser

Genomiser manual, https://exomiser.github.io/Exomiser

Genomiser source code, https://github.com/exomiser/Exomiser

GWAVA, ftp://ftp.sanger.ac.uk/pub/resources/software/gwava

Human Phenotype Ontology (HPO), http://www.human-

phenotype-ontology.org/

Monarch Initiative, http://monarchinitiative.org

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

OMIM, http://www.omim.org/
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